Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Hayes is active.

Publication


Featured researches published by Christopher S. Hayes.


Molecular Cell | 2003

Cleavage of the A Site mRNA Codon during Ribosome Pausing Provides a Mechanism for Translational Quality Control

Christopher S. Hayes; Robert T. Sauer

Cells employ many mechanisms to ensure quality control during protein biosynthesis. Here, we show that, during the pausing of a bacterial ribosome, the mRNA being translated is cleaved at a site within or immediately adjacent to the A site codon. The extent of this A site mRNA cleavage is correlated with the extent of ribosome pausing as assayed by tmRNA-mediated tagging of the nascent polypeptide. Cleavage does not require tmRNA, the ribosomal alarmone (p)ppGpp, or bacterial toxins such as RelE which have been shown to stimulate a similar activity. Translation is required for cleavage, suggesting that the ribosome participates in the reaction in some fashion. When normal protein synthesis is compromised, A site mRNA cleavage and the tmRNA system provide a mechanism for reducing translational errors and the production of aberrant and potentially harmful polypeptides.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Rhs proteins from diverse bacteria mediate intercellular competition

Sanna Koskiniemi; James Lamoureux; Kiel Nikolakakis; Claire t’Kint de Roodenbeke; Michael D. Kaplan; David A. Low; Christopher S. Hayes

Rearrangement hotspot (Rhs) and related YD-peptide repeat proteins are widely distributed in bacteria and eukaryotes, but their functions are poorly understood. Here, we show that Gram-negative Rhs proteins and the distantly related wall-associated protein A (WapA) from Gram-positive bacteria mediate intercellular competition. Rhs and WapA carry polymorphic C-terminal toxin domains (Rhs-CT/WapA-CT), which are deployed to inhibit the growth of neighboring cells. These systems also encode sequence-diverse immunity proteins (RhsI/WapI) that specifically neutralize cognate toxins to protect rhs+/wapA+ cells from autoinhibition. RhsA and RhsB from Dickeya dadantii 3937 carry nuclease domains that degrade target cell DNA. D. dadantii 3937 rhs genes do not encode secretion signal sequences but are linked to hemolysin-coregulated protein and valine-glycine repeat protein G genes from type VI secretion systems. Valine-glycine repeat protein G is required for inhibitor cell function, suggesting that Rhs may be exported from D. dadantii 3937 through a type VI secretion mechanism. In contrast, WapA proteins from Bacillus subtilis strains appear to be exported through the general secretory pathway and deliver a variety of tRNase toxins into neighboring target cells. These findings demonstrate that YD-repeat proteins from phylogenetically diverse bacteria share a common function in contact-dependent growth inhibition.


Annual Review of Genetics | 2010

Bacterial Contact-Dependent Delivery Systems

Christopher S. Hayes; Stephanie K. Aoki; David A. Low

Bacteria have developed remarkable systems that sense neighboring target cells upon contact and initiate a series of events that enhance their survival and growth at the expense of the target cells. Four main classes of bacterial cell surface structures have been identified that interact with prokaryotic or eukaryotic target cells to deliver DNA or protein effectors. Type III secretion systems (T3SS) use a flagellum-like tube to deliver protein effectors into eukaryotic host cells, whereas Type IV systems use a pilus-based system to mediate DNA or protein transfer into recipient cells. The contact-dependent growth inhibition system (CDI) is a Type V system, using a long β-helical cell surface protein to contact receptors in target cells and deliver a growth inhibitory signal. Type VI systems utilize a phage-like tube and cell puncturing device to secrete effector proteins into both eukaryotic and prokaryotic target cells.


Nature | 2010

A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria

Stephanie K. Aoki; Elie J. Diner; Claire t’Kint de Roodenbeke; Brandt R. Burgess; Stephen J. Poole; Bruce A. Braaten; Allison M. Jones; Julia S. Webb; Christopher S. Hayes; Peggy A. Cotter; David A. Low

Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA ‘exoprotein’ onto the cell surface. An additional small immunity protein (CdiI) protects CDI+ cells from autoinhibition. The mechanisms by which CDI blocks cell growth and by which CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are used during CDI. Indeed, CdiA-CTs from uropathogenic E. coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI+ cells both in laboratory media and on a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network with an important function in bacterial competition.


PLOS Genetics | 2011

Identification of Functional Toxin/Immunity Genes Linked to Contact-Dependent Growth Inhibition (CDI) and Rearrangement Hotspot (Rhs) Systems

Stephen J. Poole; Elie J. Diner; Stephanie K. Aoki; Bruce A. Braaten; Claire t’Kint de Roodenbeke; David A. Low; Christopher S. Hayes

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI+ cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. Here we show that many CDI systems contain multiple cdiA gene fragments that encode CdiA-CT sequences. These “orphan” cdiA-CT genes are almost always associated with downstream cdiI genes to form cdiA-CT/cdiI modules. Comparative genome analyses suggest that cdiA-CT/cdiI modules are mobile and exchanged between the CDI systems of different bacteria. In many instances, orphan cdiA-CT/cdiI modules are fused to full-length cdiA genes in other bacterial species. Examination of cdiA-CT/cdiI modules from Escherichia coli EC93, E. coli EC869, and Dickeya dadantii 3937 confirmed that these genes encode functional toxin/immunity pairs. Moreover, the orphan module from EC93 was functional in cell-mediated CDI when fused to the N-terminal portion of the EC93 CdiA protein. Bioinformatic analyses revealed that the genetic organization of CDI systems shares features with rhs (rearrangement hotspot) loci. Rhs proteins also contain polymorphic C-terminal regions (Rhs-CTs), some of which share significant sequence identity with CdiA-CTs. All rhs genes are followed by small ORFs representing possible rhsI immunity genes, and several Rhs systems encode orphan rhs-CT/rhsI modules. Analysis of rhs-CT/rhsI modules from D. dadantii 3937 demonstrated that Rhs-CTs have growth inhibitory activity, which is specifically blocked by cognate RhsI immunity proteins. Together, these results suggest that Rhs plays a role in intercellular competition and that orphan gene modules expand the diversity of toxic activities deployed by both CDI and Rhs systems.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli

Christopher S. Hayes; Baundauna Bose; Robert T. Sauer

The SsrA or tmRNA quality control system intervenes when ribosomes stall on mRNAs and directs the addition of a C-terminal peptide tag that targets the modified polypeptide for degradation. Although hundreds of SsrA-tagged proteins can be detected in cells when degradation is prevented, most of these species have not been identified. Consequently, the mRNA sequence determinants that cause ribosome stalling and SsrA tagging are poorly understood. SsrA tagging of Escherichia coli ribokinase occurs at three specific sites at or near the C terminus of this protein. The sites of tagging correspond to ribosome stalling at the termination codon and at rare AGG codons encoding Arg-307 and Arg-309, the antepenultimate and C-terminal residues of E. coli ribokinase. Mutational analyses and studies of the effects of overexpressing the tRNA that decodes AGG reveal that the combination of a rare arginine codon at the C terminus and the adjacent inefficient UGA termination codon act to recruit the SsrA-tagging system, presumably by slowing the rate of translation elongation and termination.


Trends in Microbiology | 2013

Bacterial contact-dependent growth inhibition

Zachary C. Ruhe; David A. Low; Christopher S. Hayes

Bacteria cooperate to form multicellular communities and compete against one another for environmental resources. Here, we review recent advances in the understanding of bacterial competition mediated by contact-dependent growth inhibition (CDI) systems. Different CDI+ bacteria deploy a variety of toxins to inhibit neighboring cells and protect themselves from autoinhibition by producing specific immunity proteins. The genes encoding CDI toxin-immunity protein pairs appear to be exchanged between cdi loci and are often associated with other toxin-delivery systems in diverse bacterial species. CDI also appears to facilitate cooperative behavior between kin, suggesting that these systems may have other roles beyond competition.


Journal of Biological Chemistry | 2006

Prolyl-tRNAPro in the A-site of SecM-arrested Ribosomes Inhibits the Recruitment of Transfer-messenger RNA

Fernando Garza-Sánchez; Brian D. Janssen; Christopher S. Hayes

Translational pausing can lead to cleavage of the A-site codon and facilitate recruitment of the transfer-messenger RNA (tmRNA) (SsrA) quality control system to distressed ribosomes. We asked whether aminoacyl-tRNA binding site (A-site) mRNA cleavage occurs during regulatory translational pausing using the Escherichia coli SecM-mediated ribosome arrest as a model. We find that SecM ribosome arrest does not elicit efficient A-site cleavage, but instead allows degradation of downstream mRNA to the 3′-edge of the arrested ribosome. Characterization of SecM-arrested ribosomes shows the nascent peptide is covalently linked via glycine 165 to \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{3}^{\mathrm{Gly}}\) \end{document} in the peptidyl-tRNA binding site, and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{prolyl}\mathrm{-}\mathrm{tRNA}_{2}^{\mathrm{Pro}}\) \end{document} is bound to the A-site. Although A-site-cleaved mRNAs were not detected, tmRNA-mediated ssrA tagging after SecM glycine 165 was observed. This tmRNA activity results from sequestration of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{prolyl}\mathrm{-}\mathrm{tRNA}_{2}^{\mathrm{Pro}}\) \end{document} on overexpressed SecM-arrested ribosomes, which produces a second population of stalled ribosomes with unoccupied A-sites. Indeed, compensatory overexpression of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{2}^{\mathrm{Pro}}\) \end{document} readily inhibits ssrA tagging after glycine 165, but has no effect on the duration of SecM ribosome arrest. We conclude that, under physiological conditions, the architecture of SecM-arrested ribosomes allows regulated translational pausing without interference from A-site cleavage or tmRNA activities. Moreover, it seems likely that A-site mRNA cleavage is generally avoided or inhibited during regulated ribosome pauses.


Molecular Microbiology | 2014

Genetically distinct pathways guide effector export through the type VI secretion system

John C. Whitney; Christina M. Beck; Young Ah Goo; Alistair B. Russell; Brittany N. Harding; Justin A. De Leon; David A. Cunningham; Bao Q. Tran; David A. Low; David R. Goodlett; Christopher S. Hayes; Joseph D. Mougous

Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co‐regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone‐like quality of Hcp. Application of this approach to the Hcp secretion island I‐encoded T6SS (H1‐T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra‐specific H1‐T6SS‐delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1‐T6SS effectors, Tse5 and Tse6, which differ from Hcp‐stabilized substrates by the presence of toxin‐associated PAAR‐repeat motifs and genetic linkage to members of the valine‐glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp‐stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1‐T6SS‐exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.


FEBS Letters | 2010

Beyond ribosome rescue: tmRNA and co‐translational processes

Christopher S. Hayes; Kenneth C. Keiler

tmRNA is a unique bi‐functional RNA that acts as both a tRNA and an mRNA to enter stalled ribosomes and direct the addition of a peptide tag to the C terminus of nascent polypeptides. Despite a reasonably clear understanding of tmRNA activity, the reason for its absolute conservation throughout the eubacteria is unknown. Although tmRNA plays many physiological roles in different bacterial systems, recent studies suggest a general role for trans‐translation in monitoring protein folding and perhaps other co‐translational processes. This review will focus on these new hypotheses and the data that support them.

Collaboration


Dive into the Christopher S. Hayes's collaboration.

Top Co-Authors

Avatar

David A. Low

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elie J. Diner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge