Christopher Strauch
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher Strauch.
Journal of Biological Chemistry | 2005
David R. Sell; Klaus M. Biemel; Oliver Reihl; Markus O. Lederer; Christopher Strauch; Vincent M. Monnier
The extracellular matrix in most tissues is characterized by progressive age-related stiffening and loss of proteolytic digestibility that are accelerated in diabetes and can be duplicated by the nonenzymatic reaction of reducing sugars and extracellular matrix proteins. However, most cross-links of the Maillard reaction described so far are present in quantities too low to account for these changes. Here we have determined in human skin and glomerular basement membrane (GBM) collagen the levels of the recently discovered lysine-arginine cross-links derived from glucose, methylglyoxal, glyoxal, and 3-deoxyglucosone, i.e. glucosepane, MODIC, GODIC, and DOGDIC, respectively. Insoluble preparations of skin collagen (n = 110) and glomerular basement membrane (GBM, n = 28) were enzymatically digested, and levels were measured by isotope dilution technique using liquid chromatography/mass spectrometry. In skin, all cross-links increased with age (p < 0.0001) except DOGDIC (p = 0.34). In nondiabetic controls, levels at 90 years were 2000, 30, and 15 pmol/mg for glucosepane, MODIC, and GODIC, respectively. Diabetes, but not renal failure, increased glucosepane to 5000 pmol/mg (p < 0.0001), and for all others, increased it to <60 pmol/mg (p < 0.01). In GBMs, glucosepane reached up to 500 pmol/mg of collagen and was increased in diabetes (p < 0.0001) but not old age. In conclusion, glucosepane is the single major cross-link of the senescent extracellular matrix discovered so far, accounting for up to >120 mole% of triple helical collagen modification in diabetes. Its presence in high quantities may contribute to a number of structural and cell matrix dysfunctions observed in aging and diabetes.
Diabetes Care | 2011
Jennifer K. Sun; Hillary A. Keenan; Jerry D. Cavallerano; Bela F. Asztalos; Ernst J. Schaefer; David R. Sell; Christopher Strauch; Vincent M. Monnier; Alessandro Doria; Lloyd Paul Aiello; George L. King
OBJECTIVE To assess complication prevalence and identify protective factors in patients with diabetes duration of ≥50 years. Characterization of a complication-free subgroup in this cohort would suggest that some individuals are protected from diabetes complications and allow identification of endogenous protective factors. RESEARCH DESIGN AND METHODS Cross-sectional, observational study of 351 U.S. residents who have survived with type 1 diabetes for ≥50 years (Medalists). Retinopathy, nephropathy, neuropathy, and cardiovascular disease were assessed in relation to HbA1c, lipids, and advanced glycation end products (AGEs). Retrospective chart review provided longitudinal ophthalmic data for a subgroup. RESULTS A high proportion of Medalists remain free from proliferative diabetic retinopathy (PDR) (42.6%), nephropathy (86.9%), neuropathy (39.4%), or cardiovascular disease (51.5%). Current and longitudinal (the past 15 years) glycemic control were unrelated to complications. Subjects with high plasma carboxyethyl-lysine and pentosidine were 7.2-fold more likely to have any complication. Of Medalists without PDR, 96% with no retinopathy progression over the first 17 years of follow-up did not experience retinopathy worsening thereafter. CONCLUSIONS The Medalist population is likely enriched for protective factors against complications. These factors might prove useful to the general population with diabetes if they can be used to induce protection against long-term complications. Specific AGE combinations were strongly associated with complications, indicating a link between AGE formation or processing with development of diabetic vasculopathy.
Diabetes | 2008
Loredana G. Bucciarelli; Radha Ananthakrishnan; Yuying C. Hwang; Michiyo Kaneko; Fei Song; David R. Sell; Christopher Strauch; Vincent M. Monnier; Shi Fang Yan; Ann Marie Schmidt; Ravichandran Ramasamy
OBJECTIVE—Subjects with diabetes experience an increased risk of myocardial infarction and cardiac failure compared with nondiabetic age-matched individuals. The receptor for advanced glycation end products (RAGE) is upregulated in diabetic tissues. In this study, we tested the hypothesis that RAGE affected ischemia/reperfusion (I/R) injury in the diabetic myocardium. In diabetic rat hearts, expression of RAGE and its ligands was enhanced and localized particularly to both endothelial cells and mononuclear phagocytes. RESEARCH DESIGN AND METHODS—To specifically dissect the impact of RAGE, homozygous RAGE-null mice and transgenic (Tg) mice expressing cytoplasmic domain-deleted RAGE (DN RAGE), in which RAGE-dependent signal transduction was deficient in endothelial cells or mononuclear phagocytes, were rendered diabetic with streptozotocin. Isolated perfused hearts were subjected to I/R. RESULTS—Diabetic RAGE-null mice were significantly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH and lower glycoxidation products carboxymethyl-lysine (CML) and pentosidine, improved functional recovery, and increased ATP. In diabetic Tg mice expressing DN RAGE in endothelial cells or mononuclear phagocytes, markers of ischemic injury and CML were significantly reduced, and levels of ATP were increased in heart tissue compared with littermate diabetic controls. Furthermore, key markers of apoptosis, caspase-3 activity and cytochrome c release, were reduced in the hearts of diabetic RAGE-modified mice compared with wild-type diabetic littermates in I/R. CONCLUSIONS—These findings demonstrate novel and key roles for RAGE in I/R injury in the diabetic heart.
Biochemical Journal | 2007
David R. Sell; Christopher Strauch; Wei Shen; Vincent M. Monnier
We hypothesized that the epsilon-amino group of lysine residues in longlived proteins oxidatively deaminates with age forming the carbonyl compound, allysine (alpha-aminoadipic acid-delta-semialdehyde), which can further oxidize into 2-aminoadipic acid. In the present study, we measured both products in insoluble human skin collagen from n=117 individuals of age range 10-90 years, of which n=61 and n=56 were non-diabetic and diabetic respectively, and a total of n=61 individuals had either acute or chronic renal failure. Allysine was reduced by borohydride into 6-hydroxynorleucine and both products were measured in acid hydrolysates by selective ion monitoring gas chromatography (GC)-MS. The results showed that 2-aminoadipic acid (P<0.0001), but not 6-hydroxynorleucine (P=0.14), significantly increased with age reaching levels of 1 and 0.3 mmol/mol lysine at late age respectively. Diabetes in the absence of renal failure significantly (P<0.0001) increased 2-aminoadipic acid up to <3 mmol/mol, but not 6-hydroxynorleucine (levels<0.4 mmol/mol, P=0.18). Renal failure even in the absence of diabetes markedly increased levels reaching up to <0.5 and 8 mmol/mol for 6-hydroxynorleucine and 2-aminoadipic acid respectively. Septicaemia significantly (P<0.0001) elevated 2-aminoadipic acid in non-diabetic, but not diabetic individuals, and mildly correlated with other glycoxidation markers, carboxymethyl-lysine and the methylglyoxal-derived products, carboxyethyl-lysine, argpyrimidine and MODIC (methylglyoxal-derived imidazolium cross-link). These results provide support for the presence of metal-catalysed oxidation (the Suyama pathway) in diabetes and the possible activation of myeloperoxidase during sepsis. We conclude that 2-aminoadipic acid is a more reliable marker for protein oxidation than its precursor, allysine. Its mechanism of formation in each of these conditions needs to be elucidated.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Xingjun Fan; Lixing W. Reneker; Mark E. Obrenovich; Christopher Strauch; Rongzhu Cheng; Simon M. Jarvis; B.J. Ortwerth; Vincent M. Monnier
Senile cataracts are associated with progressive oxidation, fragmentation, cross-linking, insolubilization, and yellow pigmentation of lens crystallins. We hypothesized that the Maillard reaction, which leads browning and aroma development during the baking of foods, would occur between the lens proteins and the highly reactive oxidation products of vitamin C. To test this hypothesis, we engineered a mouse that selectively overexpresses the human vitamin C transporter SVCT2 in the lens. Consequently, lenticular levels of vitamin C and its oxidation products were 5- to 15-fold elevated, resulting in a highly compressed aging process and accelerated formation of several protein-bound advanced Maillard reaction products identical with those of aging human lens proteins. These data strongly implicate vitamin C in lens crystallin aging and may serve as a model for protein aging in other tissues particularly rich in vitamin C, such as the hippocampal neurons and the adrenal gland. The hSVCT2 mouse is expected to facilitate the search for drugs that inhibit damage by vitamin C oxidation products.
Free Radical Biology and Medicine | 2010
Xingjun Fan; David R. Sell; Jianye Zhang; Ina Nemet; Mathilde Theves; Jie Lu; Christopher Strauch; Marc K. Halushka; Vincent M. Monnier
The effects of anaerobic (lens) vs aerobic (skin) environment on carbonyl and oxidant stress are compared using de novo and existing data on advanced glycation and oxidation products in human crystallins and collagen. Almost all modifications increase with age. Methylglyoxal hydroimidazolones, carboxymethyllysine, and carboxyethyllysine are severalfold higher in lens than in skin and markedly increase upon incubation of lens crystallins with 5mM ascorbic acid. In contrast, fructose-lysine, glucosepane crosslinks, glyoxal hydroimidazolones, metal-catalyzed oxidation (allysine), and H(2)O(2)-dependent modifications (2-aminoapidic acid and methionine sulfoxide) are markedly elevated in skin, but relatively suppressed in the aging lens. In both tissues ornithine is the dominant modification, implicating arginine residues as the principal target of the Maillard reaction in vivo. Diabetes (here mostly type 2 studied) increases significantly fructose-lysine and glucosepane in both tissues (P<0.001) but has surprisingly little effect on the absolute level of most other advanced glycation end products. However, diabetes strengthens the Spearman correlation coefficients for age-related accumulation of hydrogen peroxide-mediated modifications in the lens. Overall, the data suggest that oxoaldehyde stress involving methylglyoxal from either glucose or ascorbate is predominant in the aging noncataractous lens, whereas aging skin collagen undergoes combined attack by nonoxidative glucose-mediated modifications, as well as those from metal-catalyzed oxidation and H(2)O(2).
Journal of Biological Chemistry | 2009
Xingjun Fan; Jianye Zhang; Mathilde Theves; Christopher Strauch; Ina Nemet; X. Liu; Juan Qian; Frank J. Giblin; Vincent M. Monnier
Oxidative mechanisms during nuclear sclerosis of the lens are poorly understood, in particular metal-catalyzed oxidation. The lysyl oxidation product adipic semialdehyde (allysine, ALL) and its oxidized end-product 2-aminoadipic acid (2-AAA) were determined as a function of age and presence of diabetes. Surprisingly, whereas both ALL and 2-AAA increased with age and strongly correlated with cataract grade and protein absorbance at 350 nm, only ALL formation but not 2-AAA was increased by diabetes. To clarify the mechanism of oxidation, rabbit lenses were treated with hyperbaric oxygen (HBO) for 48 h, and proteins were analyzed by gas and liquid chromatography mass spectrometry for ALL, 2-AAA, and multiple glycation products. Upon exposure to HBO, rabbit lenses were swollen, and nuclei were yellow. Protein-bound ALL increased 8-fold in the nuclear protein fractions versus controls. A dramatic increase in methyl-glyoxal hydroimidazolone and carboxyethyl-lysine but no increase of 2-AAA occurred, suggesting more drastic conditions are needed to oxidize ALL into 2-AAA. Indeed the latter formed only upon depletion of glutathione and was catalyzed by H2O2. Neither carboxymethyl-lysine nor glyoxal hydroimidazolone, two markers of glyco-/lipoxidation, nor markers of lenticular glycemia (fructose-lysine, glucospane) were elevated by HBO, excluding significant lipid peroxidation and glucose involvement. The findings strongly implicate dicarbonyl/metal catalyzed oxidation of lysine to allysine, whereby low GSH combined with ascorbate-derived H2O2 likely contributes toward 2-AAA formation, since virtually no 2-AAA formed in the presence of methylglyoxal instead of ascorbate. An important translational conclusion is that chelating agents might help delay nuclear sclerosis.
Food & Function | 2013
Irene Roncero-Ramos; Cristina Delgado-Andrade; Frédéric J. Tessier; Céline Niquet-Léridon; Christopher Strauch; Vincent M. Monnier; María Pilar Navarro
Our aim was to investigate carboxymethyl-lysine (CML) intake and excretion after feeding rats with diets containing advanced glycation end-products (AGEs) from bread crust (BC) or its soluble or insoluble fractions, and to identify the factors responsible for the effects observed. CML in serum and different tissues was measured to detect possible accumulations. For 88 days, weanling rats were fed with either a control diet or one containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. In the last week of the assay, faeces and urine were collected daily and stored as a 1 week pool. After sacrifice, blood was drawn to obtain serum and some organs were removed. CML analysis was performed by HPLC/MS/MS in diets, faeces, urines, serum and tissues. Faecal excretion of CML was strongly influenced by dietary CML levels and represents the major route of excretion (i.e. 33.2%). However, the urinary elimination of CML was probably limited or saturated, especially when more complex compounds were present in the diet. BC consumption increased CML in the cardiac tissue (170 ± 18 vs. 97 ± 3 μmol per mol lysine for BC and control groups), which correlated with the CML intake. The levels of this AGE in bone were unaffected by the dietary treatment, but in tail tendons CML was greatly increased in the animals that consumed the BC diet (102 ± 13 vs. 51 ± 8 μmol per mol lysine for BC and control groups, P = 0.006), which was associated with the intake of soluble LMW compounds present in BC. Despite the CML accumulation detected in different tissues, serum levels of protein-bound CML were unchanged, indicating the importance of measuring the free CML in this fluid as a real index of dietary CML.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012
Philip Dammann; David R. Sell; Sabine Begall; Christopher Strauch; Vincent M. Monnier
Mole-rat of the genus Fukomys are mammals whose life span is strongly influenced by reproductive status with breeders far outliving nonbreeders. This raises the important question of whether increased longevity of the breeders is reflected in atypical expression of biochemical markers of aging. Here, we measured markers of glycation and advanced glycation end-products formed in insoluble skin collagen of Ansells mole-rat Fukomys anselli as a function of age and breeding status. Glucosepane, pentosidine, and total advanced glycation end-product content significantly increased with age after correction for breeder status and sex. Unexpectedly, total advanced glycation end-products, glucosepane, and carboxymethyl-lysine (CML) were significantly higher in breeders versus nonbreeders suggesting that breeders have evolved powerful defenses against combined oxidant and carbonyl stress compared with nonbreeders. Most interestingly, when compared with other mammals, pentosidine formation rate was lower in mole-rat compared with other short-lived rodents confirming previous observations of an inverse relationship between longevity and pentosidine formation rates in skin collagen.
Diabetes and Vascular Disease Research | 2014
Kari Anne Sveen; Tone Nerdrum; Kristian F. Hanssen; Magne Brekke; Peter A. Torjesen; Christopher Strauch; David R. Sell; Vincent M. Monnier; Knut Dahl-Jørgensen; Kjetil Steine
Our aims were to study left ventricular (LV) function and myocardial blood flow reserve (MBFR) in long-term type 1 diabetes and associations with advanced glycation end products (AGEs). A total of 20 type 1 diabetes patients from the Oslo Study without significant stenosis on coronary angiography were compared with 26 controls. LV systolic and diastolic functions were assessed by two-dimensional strain and the ratio between pulsed Doppler transmitral early (E) velocity and tissue Doppler velocity (E′), respectively. MBFR was evaluated by contrast echocardiography. The AGE methylglyoxal-derived hydroimidazolone was analysed in serum. Glyoxal hydroimidazolone in skin collagen was determined by liquid chromatography-mass spectrometry. Strain was significantly reduced (−19.5% ± 1.9% vs −21.4% ± 3.5%, p < 0.05), and E/E′ increased in the diabetes patients compared to controls, 7.3 ± 2 versus 6.0 ± 1.5, p < 0.05. Significant lower MBFR was present in the diabetes patients, 3.4 (2.1, 5.3) versus 5.9 (3.9, 9.6), p < 0.01. Both AGEs correlated significantly with E/E′. The impaired LV function with correlation to AGEs in concert with reduced MBFR in diabetics without coronary artery disease may indicate possible mechanisms for diabetic cardiomyopathy.