Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher T. Pappas is active.

Publication


Featured researches published by Christopher T. Pappas.


Journal of Clinical Investigation | 2014

Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy

Michaela Yuen; Sarah A. Sandaradura; James J. Dowling; Alla S. Kostyukova; Natalia Moroz; Kate G. R. Quinlan; Vilma-Lotta Lehtokari; Gianina Ravenscroft; Emily J. Todd; Ozge Ceyhan-Birsoy; David S. Gokhin; Jérome Maluenda; Monkol Lek; Flora Nolent; Christopher T. Pappas; Stefanie M. Novak; Adele D’Amico; Edoardo Malfatti; Brett Thomas; Stacey Gabriel; Namrata Gupta; Mark J. Daly; Biljana Ilkovski; Peter J. Houweling; Ann E. Davidson; Lindsay C. Swanson; Catherine A. Brownstein; Vandana Gupta; Livija Medne; Patrick Shannon

Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.


Genes & Development | 2012

Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization

Laura T. Donlin; Christian Andresen; Steffen Just; Eugene Rudensky; Christopher T. Pappas; Martina Krüger; Erica Y. Jacobs; Andreas Unger; Anke Zieseniss; Marc Werner Dobenecker; Tobias Voelkel; Brian T. Chait; Carol C. Gregorio; Wolfgang Rottbauer; Alexander Tarakhovsky; Wolfgang A. Linke

Protein lysine methylation is one of the most widespread post-translational modifications in the nuclei of eukaryotic cells. Methylated lysines on histones and nonhistone proteins promote the formation of protein complexes that control gene expression and DNA replication and repair. In the cytoplasm, however, the role of lysine methylation in protein complex formation is not well established. Here we report that the cytoplasmic protein chaperone Hsp90 is methylated by the lysine methyltransferase Smyd2 in various cell types. In muscle, Hsp90 methylation contributes to the formation of a protein complex containing Smyd2, Hsp90, and the sarcomeric protein titin. Deficiency in Smyd2 results in the loss of Hsp90 methylation, impaired titin stability, and altered muscle function. Collectively, our data reveal a cytoplasmic protein network that employs lysine methylation for the maintenance and function of skeletal muscle.


Journal of Bacteriology | 2004

Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

Christopher T. Pappas; Jakub P. Sram; Oleg V. Moskvin; Pavel S. Ivanov; R. Christopher Mackenzie; Madhusudan Choudhary; Miriam Land; Frank W. Larimer; Samuel Kaplan; Mark Gomelsky

A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes--aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis--were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.


Trends in Cell Biology | 2011

The Nebulin family: an actin support group

Christopher T. Pappas; Katherine T. Bliss; Anke Zieseniss; Carol C. Gregorio

Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.


Journal of Cell Science | 2010

Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle

Takehiro Tsukada; Christopher T. Pappas; Natalia Moroz; Parker B. Antin; Alla S. Kostyukova; Carol C. Gregorio

Regulation of actin filament assembly is essential for efficient contractile activity in striated muscle. Leiomodin is an actin-binding protein and homolog of the pointed-end capping protein, tropomodulin. These proteins are structurally similar, sharing a common domain organization that includes two actin-binding sites. Leiomodin also contains a unique C-terminal extension that has a third actin-binding WH2 domain. Recently, the striated-muscle-specific isoform of leiomodin (Lmod2) was reported to be an actin nucleator in cardiomyocytes. Here, we have identified a function of Lmod2 in the regulation of thin filament lengths. We show that Lmod2 localizes to the pointed ends of thin filaments, where it competes for binding with tropomodulin-1 (Tmod1). Overexpression of Lmod2 results in loss of Tmod1 assembly and elongation of the thin filaments from their pointed ends. The Lmod2 WH2 domain is required for lengthening because its removal results in a molecule that caps the pointed ends similarly to Tmod1. Furthermore, Lmod2 transcripts are first detected in the heart after it has begun to beat, suggesting that the primary function of Lmod2 is to maintain thin filament lengths in the mature heart. Thus, Lmod2 antagonizes the function of Tmod1, and together, these molecules might fine-tune thin filament lengths.


Journal of Cell Science | 2010

Reduced myofibrillar connectivity and increased Z-disk width in nebulin-deficient skeletal muscle

Paola Tonino; Christopher T. Pappas; Bryan D. Hudson; Siegfried Labeit; Carol C. Gregorio; Henk Granzier

A prominent feature of striated muscle is the regular lateral alignment of adjacent sarcomeres. An important intermyofibrillar linking protein is the intermediate filament protein desmin, and based on biochemical and structural studies in primary cultures of myocytes it has been proposed that desmin interacts with the sarcomeric protein nebulin. Here we tested whether nebulin is part of a novel biomechanical linker complex, by using a recently developed nebulin knockout (KO) mouse model and measuring Z-disk displacement in adjacent myofibrils of both extensor digitorum longus (EDL) and soleus muscle. Z-disk displacement increased as sarcomere length (SL) was increased and the increase was significantly larger in KO fibers than in wild-type (WT) fibers; results in 3-day-old and 10-day-old mice were similar. Immunoelectron microscopy revealed reduced levels of desmin in intermyofibrillar spaces adjacent to Z-disks in KO fibers compared with WT fibers. We also performed siRNA knockdown of nebulin and expressed modules within the Z-disk portion of nebulin (M160-M170) in quail myotubes and found that this prevented the mature Z-disk localization of desmin filaments. Combined, these data suggest a model in which desmin attaches to the Z-disk through an interaction with nebulin. Finally, because nebulin has been proposed to play a role in specifying Z-disk width, we also measured Z-disk width in nebulin KO mice. Results show that most Z-disks of KO mice were modestly increased in width (~80 nm in soleus and ~40 nm in EDL fibers) whereas a small subset had severely increased widths (up to ~1 μm) and resembled nemaline rod bodies. In summary, structural studies on a nebulin KO mouse show that in the absence of nebulin, Z-disks are significantly wider and that myofibrils are misaligned. Thus the functional roles of nebulin extend beyond thin filament length regulation and include roles in maintaining physiological Z-disk widths and myofibrillar connectivity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Deleting titin’s I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function

Henk Granzier; Kirk R. Hutchinson; Paola Tonino; Mei Methawasin; Frank Li; Rebecca Slater; Mathew M. Bull; Chandra Saripalli; Christopher T. Pappas; Carol C. Gregorio; John E. Smith

Significance Mutations in titin are a major cause of heart failure, yet the functions of large parts of titin are not understood. Here we studied titin’s I-band/A-band junction that has been proposed to be crucial for thick filament length control. We made a mouse in which titin’s IA junction was deleted. Super-resolution microscopy (structured illumination microscopy) revealed that deleting the IA junction increases the strain on titin’s molecular spring elements without altering thick filament length. Single cell biomechanical measurements showed that this increases passive stiffness while functional studies at the whole animal level revealed diastolic dysfunction, exercise intolerance, and modest concentric cardiac hypertrophy—signature features of heart failure with preserved ejection fraction. Our studies support that titin is a promising therapeutic target for treating heart failure. Titin, the largest protein known, forms a giant filament in muscle where it spans the half sarcomere from Z disk to M band. Here we genetically targeted a stretch of 14 immunoglobulin-like and fibronectin type 3 domains that comprises the I-band/A-band (IA) junction and obtained a viable mouse model. Super-resolution optical microscopy (structured illumination microscopy, SIM) and electron microscopy were used to study the thick filament length and titin’s molecular elasticity. SIM showed that the IA junction functionally belongs to the relatively stiff A-band region of titin. The stiffness of A-band titin was found to be high, relative to that of I-band titin (∼40-fold higher) but low, relative to that of the myosin-based thick filament (∼70-fold lower). Sarcomere stretch therefore results in movement of A-band titin with respect to the thick filament backbone, and this might constitute a novel length-sensing mechanism. Findings disproved that titin at the IA junction is crucial for thick filament length control, settling a long-standing hypothesis. SIM also showed that deleting the IA junction moves the attachment point of titin’s spring region away from the Z disk, increasing the strain on titin’s molecular spring elements. Functional studies from the cellular to ex vivo and in vivo left ventricular chamber levels showed that this causes diastolic dysfunction and other symptoms of heart failure with preserved ejection fraction (HFpEF). Thus, our work supports titin’s important roles in diastolic function and disease of the heart.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality.

Christopher T. Pappas; Rachel M. Mayfield; Christine A. Henderson; Nima Jamilpour; Cathleen Cover; Zachary Hernandez; Kirk R. Hutchinson; Miensheng Chu; Ki Hwan Nam; Jose M. Valdez; Pak Kin Wong; Henk Granzier; Carol C. Gregorio

Significance Modulation of actin filament architecture underlies a plethora of cellular processes including cell shape, division, adhesion, and motility. In heart muscle cells actin-containing thin filaments form highly organized structures with precisely regulated lengths. This precision is required for efficient interaction with myosin-containing filaments and provides the basis for contraction. The mechanism whereby heart muscle cells regulate thin filament assembly and its consequences for cardiac physiology are largely unknown. We discovered that Leiomodin 2 (Lmod2) elongates thin filaments to a proper length. Mice lacking Lmod2 have abnormally short thin filaments, experience severe contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy, and die at age ∼3 wk. Therefore, Lmod2 and proper thin filament lengths are essential for heart function. Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


Journal of Molecular Evolution | 2005

Transposable element orientation bias in the Drosophila melanogaster genome.

Asher D. Cutter; Jeffrey M. Good; Christopher T. Pappas; Matthew A. Saunders; Dean Starrett; Travis J. Wheeler

Nonrandom distributions of transposable elements can be generated by a variety of genomic features. Using the full D. melanogaster genome as a model, we characterize the orientations of different classes of transposable elements in relation to the directionality of genes. DNA-mediated transposable elements are more likely to be in the same orientation as neighboring genes when they occur in the nontranscribed region’s that flank genes. However, RNA-mediated transposable elements located in an intron are more often oriented in the direction opposite to that of the host gene. These orientation biases are strongest for genes with highly biased codon usage, probably reflecting the ability of such loci to respond to weak positive or negative selection. The leading hypothesis for selection against transposable elements in the coding orientation proposes that transcription termination poly(A) signal motifs within retroelements interfere with normal gene transcription. However, after accounting for differences in base composition between the strands, we find no evidence for global selection against spurious transcription termination signals in introns. We therefore conclude that premature termination of host gene transcription due to the presence of poly(A) signal motifs in retroelements might only partially explain strand-specific detrimental effects in the D. melanogaster genome.


Annals of Neurology | 2016

Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

Josine M. de Winter; Barbara Joureau; Eun-Jeong Lee; Balázs Kiss; Michaela Yuen; Vandana Gupta; Christopher T. Pappas; Carol C. Gregorio; Ger J.M. Stienen; Simon Edvardson; Carina Wallgren-Pettersson; Vilma Lotta Lehtokari; Katarina Pelin; Edoardo Malfatti; Norma B. Romero; Baziel G.M. van Engelen; Nicol C. Voermans; Sandra Donkervoort; Carsten G. Bönnemann; Nigel F. Clarke; Alan H. Beggs; Henk Granzier; Coen A.C. Ottenheijm

Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation.

Collaboration


Dive into the Christopher T. Pappas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alla S. Kostyukova

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Natalia Moroz

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Joureau

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ger J.M. Stienen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alan H. Beggs

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Frank Li

University of Arizona

View shared research outputs
Researchain Logo
Decentralizing Knowledge