Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher T. Robinson is active.

Publication


Featured researches published by Christopher T. Robinson.


Aquatic Sciences | 2007

Invertebrate and microbial responses to inundation in an ephemeral river reach in New Zealand : effects of preceding dry periods

Scott T. Larned; Thibault Datry; Christopher T. Robinson

Abstract.Inundation marks the shift from a terrestrial ecosystem to an aquatic ecosystem in ephemeral rivers. The forms and rates of responses by aquatic invertebrates and sediment microbes to inundation depend on desiccation resistance during preceding dry periods. We assessed invertebrate and microbial responses to inundation over a range of preceding dry periods in an ephemeral reach of the Selwyn River, New Zealand. Microbial response variables were dissolved oxygen consumption and non-specific esterase activity. Sampling sites along the reach had been continuously dry for 1–592 d prior to sample collection. The onset of flow simulated by an experimental inundation led to the appearance of aquatic invertebrates in all samples, but the assemblages varied with the length of the preceding dry period. Taxon richness decreased linearly with dry period length while density decreased exponentially. These patterns indicate that a large number of individuals from desiccation-sensitive taxa were eliminated soon after flow ceased, and a low-density assemblage composed of a small number of desiccation-resistant taxa persisted during prolonged dry periods. As with invertebrate density, sediment respiration and nonspecific esterase activity decreased with length of dry period, and were characterized by exponential decay functions. The results of the inundation experiments suggest that a temporal ecotone exists for about one week after the disappearance of flowing water, and before the terrestrial system stabilizes.


Ecological Applications | 2012

Long‐term changes in community assembly, resistance, and resilience following experimental floods

Christopher T. Robinson

This study examined the long-term changes in community assembly, resistance, and resilience of macroinvertebrates following 10 years of experimental floods in a flow regulated river. Physico-chemistry, macroinvertebrates, and periphyton biomass were monitored before and sequentially after each of 22 floods, and drift/seston was collected during six separate floods over the study period. The floods reduced the density and taxon richness of macroinvertebrates, and a nonmetric dimensional scaling (NMDS) analysis distinguished temporal shifts in community assembly. Resistance (measured as the relative lack of loss in density) tofloods varied among taxa, and the abundance of resistant taxa was related to the temporal changes in community assembly. Community resistance was inversely related to flood magnitude with all larger floods (> 25 m3/s, > 16-fold over baseflow) reducing densities by > 75% regardless of flood year, whereas smaller floods (< 20 m3/s) reduced taxon richness approximately twofold less than larger floods. No relationship was found between flood magnitude and the relative loss in periphyton biomass. Resilience was defined as the recovery slope (positive slope of a parameter with time following each flood) and was unrelated to shifts in community assembly or resistance. Macroinvertebrate drift and seston demonstrated hysteresis (i.e., a temporal response in parameter quantity with change in discharge) during each flood, although larger floods typically had two peaks in both parameters. The first peak was a response to the initial increases in flow, whereas the second peak was associated with streambed disturbance (substrate mobility) and side-slope failure causing increased scour. Drift density was 3-9 times greater and that of seston 3-30 times greater during larger floods than smaller floods. These results demonstrate temporal shifts in macroinvertebrate community assembly toward a pre-dam assemblage following sequential floods in this flow regulated river, thus confirming the ecological role of habitat filtering in organism distribution and abundance. Community resistance and resilience were unrelated to shifts in community assembly, suggesting that they are mostly evolutionary properties of ecosystems as populations adapt to changing environmental (disturbance regimes) and biotic (novel colonists) conditions. As these systems show behaviors similar to dispersal-limited ecosystems, a long-term perspective is required for management actions targeted toward regulated and fragmented rivers.


Hydrobiologia | 2010

The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate

Urs Uehlinger; Christopher T. Robinson; Mäggi Hieber; Rainer Zah

The physico-chemical habitat template of glacial streams in the Alps is characterized by distinct and predictable changes between harsh and relatively benign periods. Spring and autumn were thought to be windows of favorable environmental conditions conducive for periphyton development. Periphyton biomass (measured as chlorophyll a and ash-free dry mass) was quantified in five glacial and three non-glacial streams over an annual cycle. One glacial stream was an outlet stream of a proglacial lake. In all glacial streams, seasonal patterns in periphyton were characterized by low biomass during summer high flow when high turbidity and transport of coarse sediment prevailed. With the end of icemelt in autumn, environmental conditions became more favorable and periphyton biomass increased. Biomass peaked between late September and January. In spring, low flow, low turbidity, and a lack of coarse sediment transport were not paralleled by an increase in periphyton biomass. In the non-glacial streams, seasonal periphyton patterns were similar to those of glacial streams, but biomass was significantly higher. Glacier recession from climate change may shift water sources in glacier streams and attenuate the glacial flow pulse. These changes could alter predicted periods of optimal periphyton development. The window of opportunity for periphyton accrual will shift earlier and extend into autumn in channels that retain surface flows.


Aquatic Sciences | 2014

Spatial relationships between land-use, habitat, water quality and lotic macroinvertebrates in two Swiss catchments

Christopher T. Robinson; Nele Schuwirth; Simone D. Baumgartner; Christian Stamm

We examined the influence of land-use, habitat, and water quality on the spatial distribution of aquatic macroinvertebrates in two human-dominated catchments in the Swiss Plateau (Gürbe, Mönchaltorfer Aa). Land-use in the Gürbe catchment was dominated by agriculture, whereas urban land-use was more common in the Mönchaltorfer Aa. Study sites in each catchment were characterized using measures of local habitat conditions, water quality parameters including water temperature, and organic matter resources. A strong longitudinal gradient in temperature, conductivity and nitrogen was evident among sites in the Gürbe catchment, although sites on a main tributary had a strong agricultural signature and deviated from this pattern. Percentage agricultural land-use in the Gürbe was strongly correlated with algal biomass and the water quality PCA axes associated with conductivity, nitrogen (axis-1) and temperature (axis-3). Spatial grouping of sites by water quality was less evident in the Mönchaltorfer Aa, except for a strong signal by wastewater treatment plant effluents and partial differences between upper and lower basin sites. Percentage forest and agricultural land-use in the Mönchaltorfer Aa were correlated with water quality PCA axis-2, being associated with phosphorus and temperature. Macroinvertebrate densities, taxonomic richness, and axis-1 from a non-metric multidimensional scaling analysis (NMDS) of taxonomic composition were significantly correlated with water quality PCA axis-1 in the Gürbe catchment. Here, macroinvertebrate densities and NMDS axis-1 scores based on taxon relative abundances and densities were correlated with land-use features. Spatial distances between sites also were related to site differences in macroinvertebrates, reflecting the strong longitudinal environmental gradient in the Gürbe. Taxonomic differences between water quality PCA site groups were less pronounced in the Mönchaltorfer Aa, although differences were significant for trichopterans, ephemeropterans, chironomids, gastropods and coleopterans. Here, NMDS axis-1 based on taxon relative abundances and densities was correlated with forest land-use. Spatial distances between sites were not evident in macroinvertebrate site differences, reflecting the less pronounced spatial and longitudinal patterns in environmental attributes in this catchment. Our results support the hypothesis that spatial distributions of macroinvertebrates are related to spatial relationships among environmental attributes like land-use, habitat, and water quality in human-dominated catchments that depend on river network complexity, a habitat-filtering template in line with ecological niche theory.


Molecular Ecology | 2018

Cryptic species as a window into the paradigm shift of the species concept

Cene Fišer; Christopher T. Robinson; Florian Malard

The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new “species” paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category—which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a “process” counterpart to the long‐studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance‐based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large‐scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty.


BMC Evolutionary Biology | 2016

Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps

Marie Leys; Irene Keller; Jean-Luc Gattolliat; Christopher T. Robinson

BackgroundMany species contain evolutionarily distinct groups that are genetically highly differentiated but morphologically difficult to distinguish (i.e., cryptic species). The presence of cryptic species poses significant challenges for the accurate assessment of biodiversity and, if unrecognized, may lead to erroneous inferences in many fields of biological research and conservation.ResultsWe tested for cryptic genetic variation within the broadly distributed alpine mayfly Baetis alpinus across several major European drainages in the central Alps. Bayesian clustering and multivariate analyses of nuclear microsatellite loci, combined with phylogenetic analyses of mitochondrial DNA, were used to assess population genetic structure and diversity. We identified two genetically highly differentiated lineages (A and B) that had no obvious differences in regional distribution patterns, and occurred in local sympatry. Furthermore, the two lineages differed in relative abundance, overall levels of genetic diversity as well as patterns of population structure: lineage A was abundant, widely distributed and had a higher level of genetic variation, whereas lineage B was less abundant, more prevalent in spring-fed tributaries than glacier-fed streams and restricted to high elevations. Subsequent morphological analyses revealed that traits previously acknowledged as intraspecific variation of B. alpinus in fact segregated these two lineages.ConclusionsTaken together, our findings indicate that even common and apparently ecologically well-studied species may consist of reproductively isolated units, with distinct evolutionary histories and likely different ecology and evolutionary potential. These findings emphasize the need to investigate hidden diversity even in well-known species to allow for appropriate assessment of biological diversity and conservation measures.


Freshwater Science | 2013

Effects of forest type and stream size on volume and distribution of stream wood: legacies of wildfire in a Euro-Mediterranean context

Pedro G. Vaz; Dana R. Warren; Eric C. Merten; Christopher T. Robinson; Paulo Pinto; Francisco Rego

Abstract. Downed wood pieces are key links between terrestrial and aquatic ecosystems. They promote organic matter retention, create habitat, and potentially increase stream productivity. The stock of downed wood in a river system is a product of the interaction between wood supply, transport, in situ losses, and retention characteristics of the system. Fire and forest management are important disturbances that influence the amount and organization of stream wood with boom-and-bust periods of recruitment and fluvial transport processes. We examined 1st- through 3rd-order Portuguese streams flowing through 3 common silvicultural systems in southern Europe: forests of cork oak, eucalyptus, and maritime pine. Our data set included 1483 pieces of wood in 27 streams, all of which had experienced extensive wildfires within the previous 6 y. We used binned neighbor-k analysis to assess wood organization (segregated, random, or aggregated). We then used linear mixed-effects modeling to evaluate the effects of stream order, forest type, and their interaction on wood volume and organization. The best predictor of wood volume and organization was the interaction between forest type and stream order. Most wood pieces were burned and organization was low, suggesting that arrangement of wood was largely a product of input dynamics rather than transport processes at this time. Potential drivers of across-system variability included vegetation obstructions, wood length∶channel width ratios, management actions, and effects of fire. Climate models predict more droughts in the Euro-Mediterranean region in the future, with implications for wood volume, transport, and function as terrestrial vegetation invades intermittent stream channels and plant communities shift from managed forests to shrublands with few trees.


Environmental Science & Technology | 2012

Moving targets, long-lived infrastructure, and increasing needs for integration and adaptation in water management: an illustration from Switzerland.

Janet G. Hering; E. Hoehn; A. Klinke; M. Maurer; Armin Peter; Peter Reichert; Christopher T. Robinson; Kristin Schirmer; Mario Schirmer; Christian Stamm; Bernhard Wehrli

Switzerland provides an example of successful management of water infrastructure and water resources that was accomplished largely without integration across sectors. Limitations in this approach have become apparent; decisions that were formerly based only on technical and economic feasibility must now incorporate broader objectives such as ecological impact. In addition, current and emerging challenges relate to increasingly complex problems that are likely to demand more integrated approaches. If such integration is to be of benefit, it must be possible to redirect resources across sectors, and the synergies derived from integration must outweigh the additional cost of increased complexity.


Frontiers in Microbiology | 2015

Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains.

Remo Freimann; Helmut Bürgmann; Stuart E. G. Findlay; Christopher T. Robinson

Microbial community assembly and microbial functions are affected by a number of different but coupled drivers such as local habitat characteristics, dispersal rates, and species interactions. In groundwater systems, hydrological flow can introduce spatial structure and directional dependencies among these drivers. We examined the importance of hydrology in structuring bacterial communities and their function within two alpine floodplains during different hydrological states. Piezometers were installed in stream sediments and surrounding riparian zones to assess hydrological flows and also were used as incubation chambers to examine bacterial community structures and enzymatic functions along hydrological flow paths. Spatial eigenvector models in conjunction with models based on physico-chemical groundwater characteristics were used to evaluate the importance of hydrologically-driven processes influencing bacterial assemblages and their enzymatic activities. Our results suggest a strong influence (up to 40% explained variation) of hydrological connectivity on enzymatic activities. The effect of hydrology on bacterial community structure was considerably less strong, suggesting that assemblages demonstrate large functional plasticity/redundancy. Effect size varied between hydrological periods but flow-related mechanisms always had the most power in explaining both bacterial structure and functioning. Changes in hydrology should be considered in models predicting ecosystem functioning and integrated into ecosystem management strategies for floodplains.


Aquatic Sciences | 2013

Spatial patterns in macroinvertebrate assemblages in surface-flowing waters of a glacially-influenced floodplain

Christopher T. Robinson; Michael Doering

We examined the spatial structure of macroinvertebrate assemblages in surface-flowing waters of a glacially-influenced floodplain. The floodplain main-channel responded longitudinally to changes in hydrology with evident coarse-scale zones of upwelling and downwelling; the lower floodplain main channel fell dry in late winter. Physico-chemical attributes differed among tributaries and the main channel. The main channel had lower values of conductivity, alkalinity and nitrate–N than tributaries, with right-side (east-facing) tributaries having the highest values. Left-side (west-facing) tributaries flowing over an exposed rock-face had warmer water temperatures than the main channel and right-side tributaries. The biomass of benthic organic matter and periphyton was highest in right-side tributaries, followed by main channel sites then left-side tributaries. Similarly, macroinvertebrate density and richness were higher in right-side tributaries, intermediate in main channel sites, and lowest in left-side tributaries. Macroinvertebrate assemblages clearly differed between main channel sites, right-side tributaries, and left side tributaries based on an NMDS analysis. Minor differences were observed among main channel sites, although most upstream sites showed some structural differences from downstream sites. Ephemeropterans and plecopterans were most common in main channel sites and right-side tributaries, whereas chironomids and trichopterans also were common in right-side tributaries. Although the main channel changed longitudinally in physico-chemical characteristics, no real patterns of zonation were evident in macroinvertebrate assemblages. Coarse spatial patterns in macroinvertebrate assemblages in the floodplain were reflected in the physico-chemical differences between the main channel and tributaries, and between left-side and right-side tributaries. We conclude that coarse-scale floodplain properties enhance the overall diversity of lotic macroinvertebrates. Consequently, floodplain alterations that reduce surface water heterogeneity/connectivity limits the potential macroinvertebrate diversity of floodplains.

Collaboration


Dive into the Christopher T. Robinson's collaboration.

Top Co-Authors

Avatar

Michael Doering

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Francisco Rego

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro G. Vaz

Technical University of Lisbon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone D. Baumgartner

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Irene Keller

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Marie Leys

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge