Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Volk is active.

Publication


Featured researches published by Christopher Volk.


Pharmaceutical Research | 2007

Polyspecific organic cation transporters : Structure, function, physiological roles, and biopharmaceutical implications

Hermann Koepsell; Katrin S. Lips; Christopher Volk

The body is equipped with broad-specificity transporters for the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins and environmental waste products. This group of transporters consists of the electrogenic cation transporters OCT1-3 (SLC22A1-3), the cation and carnitine transporters OCTN1 (SLC22A4), OCTN2 (SLC22A5) and OCT6 (SLC22A16), and the proton/cation antiporters MATE1, MATE2-K and MATE2-B. The transporters show broadly overlapping sites of expression in many tissues such as small intestine, liver, kidney, heart, skeletal muscle, placenta, lung, brain, cells of the immune system, and tumors. In epithelial cells they may be located in the basolateral or luminal membranes. Transcellular cation movement in small intestine, kidney and liver is mediated by the combined action of electrogenic OCT-type uptake systems and MATE-type efflux transporters that operate as cation/proton antiporters. Recent data showed that OCT-type transporters participate in the regulation of extracellular concentrations of neurotransmitters in brain, mediate the release of acetylcholine in non-neuronal cholinergic reactions, and are critically involved in the regulation of histamine release from basophils. The recent identification of polymorphisms in human OCTs and OCTNs allows the identification of patients with an increased risk for adverse drug reactions. Transport studies with expressed OCTs will help to optimize pharmacokinetics during development of new drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A glucose sensor hiding in a family of transporters

Ana Díez-Sampedro; Bruce A. Hirayama; Christina Osswald; Valentin Gorboulev; Katharina Baumgarten; Christopher Volk; Ernest M. Wright; Hermann Koepsell

We have examined the expression and function of a previously undescribed human member (SGLT3/SLC5A4) of the sodium/glucose cotransporter gene family (SLC5) that was first identified by the chromosome 22 genome project. The cDNA was cloned and sequenced, confirming that the gene coded for a 659-residue protein with 70% amino acid identity to the human SGLT1. RT-PCR and Western blotting showed that the gene was transcribed and mRNA was translated in human skeletal muscle and small intestine. Immunofluorescence microscopy indicated that in the small intestine the protein was expressed in cholinergic neurons in the submucosal and myenteric plexuses, but not in enterocytes. In skeletal muscle SGLT3 immunoreactivity colocalized with the nicotinic acetylcholine receptor. Functional studies using the Xenopus laevis oocyte expression system showed that hSGLT3 was incapable of sugar transport, even though SGLT3 was efficiently inserted into the plasma membrane. Electrophysiological assays revealed that glucose caused a specific, phlorizin-sensitive, Na+-dependent depolarization of the membrane potential. Uptake assays under voltage clamp showed that the glucose-induced inward currents were not accompanied by glucose transport. We suggest that SGLT3 is not a Na+/glucose cotransporter but instead a glucose sensor in the plasma membrane of cholinergic neurons, skeletal muscle, and other tissues. This points to an unexpected role of glucose and SLC5 proteins in physiology, and highlights the importance of determining the tissue expression and function of new members of gene families.


Journal of Pharmacology and Experimental Therapeutics | 2009

Transport of Lamivudine [(-)-β-l-2′,3′-Dideoxy-3′-thiacytidine] and High-Affinity Interaction of Nucleoside Reverse Transcriptase Inhibitors with Human Organic Cation Transporters 1, 2, and 3

Gerard Minuesa; Christopher Volk; Míriam Molina-Arcas; Valentin Gorboulev; Itziar Erkizia; Petra Arndt; Bonaventura Clotet; Marçal Pastor-Anglada; Hermann Koepsell; Javier Martinez-Picado

Nucleoside reverse transcriptase inhibitors (NRTIs) need to enter cells to act against the HIV-1. Human organic cation transporters (hOCT1–3) are expressed and active in CD4+ T cells, the main target of HIV-1, and have been associated with antiviral uptake in different tissues. In this study, we examined whether NRTIs interact and are substrates of hOCT in cells stably expressing these transporters. Using [3H]N-methyl-4-phenylpyridinium, we found a high-affinity interaction among abacavir [[(1S,4R)-4-[2-amino-6-(cyclopropylamino)purin-9-yl]-cyclopent-2-enyl]methanol sulfate] (ABC); <0.08 nM], azidothymidine [3′-azido-3′-deoxythymidine (AZT); <0.4 nM], tenofovir disoproxil fumarate (<1.0 nM), and emtricitabine (<2.5 nM) and hOCTs. Using a wide range of concentrations of lamivudine [(-)-β-l-2′,3′-dideoxy-3′-thiacyitidine (3TC)], we determined two different binding sites for hOCTs: a high-affinity site (Kd1 = 12.3–15.4 pM) and a low-affinity site (Kd2 = 1.9–3.4 mM). Measuring direct uptake of [3H]3TC and inhibition with hOCT substrates, we identified 3TC as a novel substrate for hOCT1, 2, and 3, with hOCT1 as the most efficient transporter (Km = 1.25 ± 0.1 mM; Vmax = 10.40 ± 0.32 nmol/mg protein/min; Vmax/Km = 8.32 ± 0.40 μl/mg protein/min). In drug-drug interaction experiments, we analyzed cis-inhibition of [3H]3TC uptake by ABC and AZT and found that 40 to 50% was inhibited at low concentrations of the drugs (Ki = 22–500 pM). These data reveal that NRTIs experience a high-affinity interaction with hOCTs, suggesting a putative role for these drugs as modulators of hOCT activity. Finally, 3TC is a novel substrate for hOCTs and the inhibition of its uptake at low concentrations of ABC and AZT could have implications for the pharmacokinetics of 3TC.


Journal of Pharmacology and Experimental Therapeutics | 2009

Transport of Lamivudine (3TC) and High-Affinity Interaction of Nucleoside Reverse Transcriptase Inhibitors With Human Organic Cation Transporters 1, 2, and 3

Gerard Minuesa; Christopher Volk; Míriam Molina-Arcas; Valentin Gorboulev; Itziar Erkizia; Petra Arndt; Bonaventura Clotet; Marçal Pastor-Anglada; Hermann Koepsell; Javier Martinez-Picado

Nucleoside reverse transcriptase inhibitors (NRTIs) need to enter cells to act against the HIV-1. Human organic cation transporters (hOCT1–3) are expressed and active in CD4+ T cells, the main target of HIV-1, and have been associated with antiviral uptake in different tissues. In this study, we examined whether NRTIs interact and are substrates of hOCT in cells stably expressing these transporters. Using [3H]N-methyl-4-phenylpyridinium, we found a high-affinity interaction among abacavir [[(1S,4R)-4-[2-amino-6-(cyclopropylamino)purin-9-yl]-cyclopent-2-enyl]methanol sulfate] (ABC); <0.08 nM], azidothymidine [3′-azido-3′-deoxythymidine (AZT); <0.4 nM], tenofovir disoproxil fumarate (<1.0 nM), and emtricitabine (<2.5 nM) and hOCTs. Using a wide range of concentrations of lamivudine [(-)-β-l-2′,3′-dideoxy-3′-thiacyitidine (3TC)], we determined two different binding sites for hOCTs: a high-affinity site (Kd1 = 12.3–15.4 pM) and a low-affinity site (Kd2 = 1.9–3.4 mM). Measuring direct uptake of [3H]3TC and inhibition with hOCT substrates, we identified 3TC as a novel substrate for hOCT1, 2, and 3, with hOCT1 as the most efficient transporter (Km = 1.25 ± 0.1 mM; Vmax = 10.40 ± 0.32 nmol/mg protein/min; Vmax/Km = 8.32 ± 0.40 μl/mg protein/min). In drug-drug interaction experiments, we analyzed cis-inhibition of [3H]3TC uptake by ABC and AZT and found that 40 to 50% was inhibited at low concentrations of the drugs (Ki = 22–500 pM). These data reveal that NRTIs experience a high-affinity interaction with hOCTs, suggesting a putative role for these drugs as modulators of hOCT activity. Finally, 3TC is a novel substrate for hOCTs and the inhibition of its uptake at low concentrations of ABC and AZT could have implications for the pharmacokinetics of 3TC.


Journal of Biological Chemistry | 1997

A reevaluation of substrate specificity of the rat cation transporter rOCT1.

Georg Nagel; Christopher Volk; Thomas Friedrich; Jochen C. Ulzheimer; Ernst Bamberg; Hermann Koepsell

The substrate specificity of the previously cloned rat cation transporter rOCT1, which is expressed in kidney, liver, and small intestine, was reevaluated. rOCT1 is the first member of a new protein family comprising electrogenic and polyspecific cation transporters that transport hydrophilic cations like tetraethylammonium, choline, and monoamine neurotransmitters. Previous electrical measurements suggested that cations like quinine, quinidine, and cyanine 863, which have been classified as type 2 cations in the liver, are also transported by rOCT1, since they may induce inward currents in rOCT1 expressingXenopus oocytes (Busch, A. E., Quester, S., Ulzheimer, J. C., Waldegger, S., Gorboulev, V., Arndt, P., Lang, F., and Koepsell, H. (1996) J. Biol. Chem. 271, 32599–32604). Tracer flux measurements with oocytes and with stably transfected human embryonic kidney cells showed that [3H]quinine and [3H]quinidine are not transported by rOCT1. The voltage dependence observed for the quinine- or quinidine-induced inward currents in rOCT1-expressing oocytes, and tracer efflux measurements indicate that the inward currents by type 2 cations are generated by the inhibition of electrogenic efflux of transported type 1 cations. Therefore, rOCT1 cannot contribute to transport of type 2 cations in the liver and the hepatic transporter for type 2 cations remains to be identified.


Journal of Pharmacology and Experimental Therapeutics | 2002

The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules.

Kerry B. Goralski; Ganlu Lou; Matthew T. Prowse; Valentin Gorboulev; Christopher Volk; Hermann Koepsell; Daniel S. Sitar

In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 inXenopus oocytes and HEK 293 cells, we demonstrated that both transporters translocated amantadine. In Xenopusoocytes, the inhibitory potency of several rOCT1/2 inhibitors was similar for amantadine compared to TEA uptake and supports amantadine transport by rOCT1 and rOCT2. In proximal tubules, procainamide, quinine, cyanine863, choline, and guanidine in concentrations that inhibit rOCT1/2-mediated TEA or amantadine uptake in Xenopus oocytes exhibited no effect on amantadine uptake. At variance, these inhibitors blocked TEA uptake into proximal tubules. Amantadine and TEA transport were sensitive to modulation by 25 mM bicarbonate. The effect of bicarbonate on organic cation transport was dependent on substrate (amantadine or TEA), cell system (oocytes, HEK 293 cells, or proximal tubules), and transporter (rOCT1 or rOCT2). In proximal tubules, only amantadine uptake was stimulated by bicarbonate. The data suggested that rat renal proximal tubules contain an organic cation transporter in addition to rOCT1 and rOCT2 that mediates amantadine uptake and requires bicarbonate for optimal function. TEA uptake by the basolateral membrane may be mediated mainly by rOCT1 and rOCT2, but these transporters may be in a different functional or regulatory state when expressed in cells or oocytes compared with expression in vivo.


Molecular Pharmacology | 2009

Five Amino Acids in the Innermost Cavity of the Substrate Binding Cleft of Organic Cation Transporter 1 Interact with Extracellular and Intracellular Corticosterone

Christopher Volk; Valentin Gorboulev; Alexander Kotzsch; Thomas Müller; Hermann Koepsell

We have shown previously that Leu447 and Gln448 in the transmembrane helix (TMH) 10 of rat organic cation transporter rOCT1 are critical for inhibition of cation uptake by corticosterone. Here, we tested whether the affinity of corticosterone is different when applied from the extracellular or intracellular side. The affinity of corticosterone was determined by measuring the inhibition of currents induced by tetraethylammonium+ (TEA+) in Xenopus laevis oocytes expressing rOCT1. Either corticosterone and TEA+ were added to the bath simultaneously or the oocytes were preincubated with corticosterone, washed, and TEA+-induced currents were determined subsequently. In mutant L447Y, Ki values for extracellular and intracellular corticosterone were decreased, whereas in mutant Q448E, only the Ki for intracellular corticosterone was changed. Modeling of the interaction of corticosterone with rOCT1 in the inward- or outward-facing conformation predicted direct binding to Leu447, Phe160 (TMH2), Trp218 (TMH4), Arg440 (TMH10), and Asp475 (TM11) from both sides. In mutant F160A, affinities for extracellular and intracellular corticosterone were increased, whereas maximal inhibition was reduced in W218F and R440K. In stably transfected epithelial cells, the affinities for inhibition of 1-methyl-4-phenyl-pyridinium+ (MPP+) uptake by extracellular and intracellular corticosterone were decreased when Asp475 was replaced by glutamate. In mutants F160A, W218Y, R440K, and L447F, the affinities for MPP+ uptake were changed, and in mutant D475E, the affinity for TEA+ uptake was changed. The data suggest that Phe160, Trp218, Arg440, Leu447, and Asp475 are located within an innermost cavity of the binding cleft that is alternatingly exposed to the extracellular or intracellular side during substrate transport.


Clinical Cancer Research | 2014

Cellular uptake of imatinib into leukemic cells is independent of human organic cation transporter 1 (OCT1)

Anne T. Nies; Elke Schaeffeler; Heiko van der Kuip; Ingolf Cascorbi; Oliver Bruhn; Michael Kneba; Christiane Pott; Ute Hofmann; Christopher Volk; Shuiying Hu; Sharyn D. Baker; Alex Sparreboom; Peter Ruth; Hermann Koepsell; Matthias Schwab

Purpose: In addition to mutated BCR-ABL1 kinase, the organic cation transporter 1 (OCT1, encoded by SLC22A1) has been considered to contribute to imatinib resistance in patients with chronic myeloid leukemia (CML). As data are conflicting as to whether OCT1 transports imatinib and may serve as a clinical biomarker, we used a combination of different approaches including animal experiments to elucidate comprehensively the impact of OCT1 on cellular imatinib uptake. Experimental Design: Transport of imatinib was studied using OCT1-expressing Xenopus oocytes, mammalian cell lines (HEK293, MDCK, V79) stably expressing OCT1, human leukemic cells, and Oct1-knockout mice. OCT1 mRNA and protein expression were analyzed in leukemic cells from patients with imatinib-naïve CML as well as in cell lines. Results: Transport and inhibition studies showed that overexpression of functional OCT1 protein in Xenopus oocytes or mammalian cell lines did not lead to an increased cellular accumulation of imatinib. The CML cell lines (K562, Meg-01, LAMA84) and leukemic cells from patients expressed neither OCT1 mRNA nor protein as demonstrated by immunoblotting and immunofluorescence microscopy, yet they showed a considerable imatinib uptake. Oct1 deficiency in mice had no influence on plasma and hepatic imatinib concentrations. Conclusions: These data clearly demonstrate that cellular uptake of imatinib is independent of OCT1, and therefore OCT1 is apparently not a valid biomarker for imatinib resistance. Clin Cancer Res; 20(4); 985–94. ©2013 AACR.


American Journal of Respiratory Cell and Molecular Biology | 2005

Polyspecific Cation Transporters Mediate Luminal Release of Acetylcholine from Bronchial Epithelium

Katrin S. Lips; Christopher Volk; Bernhard M. Schmitt; Uwe Pfeil; Petra Arndt; Dagmar Miska; Leander Ermert; Wolfgang Kummer; Hermann Koepsell


American Journal of Physiology-renal Physiology | 2000

Localization of organic cation transporters OCT1 and OCT2 in rat kidney

Ulrich Karbach; Jörn Kricke; Friederike Meyer-Wentrup; Valentin Gorboulev; Christopher Volk; Dominique Loffing-Cueni; Brigitte Kaissling; S. Bachmann; Hermann Koepsell

Collaboration


Dive into the Christopher Volk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonaventura Clotet

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Gerard Minuesa

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge