Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher W. Bartlett is active.

Publication


Featured researches published by Christopher W. Bartlett.


American Journal of Human Genetics | 2002

A Major Susceptibility Locus for Specific Language Impairment Is Located on 13q21

Christopher W. Bartlett; Judy F. Flax; Mark W Logue; Veronica J. Vieland; Anne S. Bassett; Paula Tallal; Linda M. Brzustowicz

Children who fail to develop language normally-in the absence of explanatory factors such as neurological disorders, hearing impairment, or lack of adequate opportunity-are clinically described as having specific language impairment (SLI). SLI has a prevalence of approximately 7% in children entering school and is associated with later difficulties in learning to read. Research indicates that genetic factors are important in the etiology of SLI. Studies have consistently demonstrated that SLI aggregates in families. Increased monozygotic versus dizygotic twin concordance rates indicate that heredity, not just shared environment, is the cause of the familial clustering. We have collected five pedigrees of Celtic ancestry that segregate SLI, and we have conducted genomewide categorical linkage analysis, using model-based LOD score techniques. Analysis was conducted under both dominant and recessive models by use of three phenotypic classifications: clinical diagnosis, language impairment (spoken language quotient <85) and reading discrepancy (nonverbal IQ minus non-word reading >15). Chromosome 13 yielded a maximum multipoint LOD score of 3.92 under the recessive reading discrepancy model. Simulation to correct for multiple models and multiple phenotypes indicated that the genomewide empirical P value is <.01. As an alternative measure, we also computed the posterior probability of linkage (PPL), obtaining a PPL of 53% in the same region. One other genomic region yielded suggestive results on chromosome 2 (multipoint LOD score 2.86, genomic P value <.06 under the recessive language impairment model). Our findings underscore the utility of traditional LOD-score-based methods in finding genes for complex diseases, specifically, SLI.


Human Heredity | 2004

Examination of Potential Overlap in Autism and Language Loci on Chromosomes 2, 7, and 13 in Two Independent Samples Ascertained for Specific Language Impairment

Christopher W. Bartlett; Judy F. Flax; Mark W Logue; Brett J. Smith; Veronica J. Vieland; Paula Tallal; Linda M. Brzustowicz

Specific language impairment is a neurodevelopmental disorder characterized by impairments essentially restricted to the domain of language and language learning skills. This contrasts with autism, which is a pervasive developmental disorder defined by multiple impairments in language, social reciprocity, narrow interests and/or repetitive behaviors. Genetic linkage studies and family data suggest that the two disorders may have genetic components in common. Two samples, from Canada and the US, selected for specific language impairment were genotyped at loci where such common genes are likely to reside. Significant evidence for linkage was previously observed at chromosome 13q21 in our Canadian sample (HLOD 3.56) and was confirmed in our US sample (HLOD 2.61). Using the posterior probability of linkage (PPL) to combine evidence for linkage across the two samples yielded a PPL over 92%. Two additional loci on chromosome 2 and 7 showed weak evidence for linkage. However, a marker in the cystic fibrosis transmembrane conductance regulator (7q31) showed evidence for association to SLI, confirming results from another group (O’Brien et al. 2003). Our results indicate that using samples selected for components of the autism phenotype may be a useful adjunct to autism genetics.


International Journal of Developmental Neuroscience | 2005

Three autism candidate genes: a synthesis of human genetic analysis with other disciplines

Christopher W. Bartlett; Neda Gharani; James H. Millonig; Linda M. Brzustowicz

Autism is a particularly complex disorder when considered from virtually any methodological framework, including the perspective of human genetics. We first present a review of the genetic analysis principles relevant for discussing autism genetics research. From this body of work we highlight results from three candidate genes, REELIN (RELN), SEROTONIN TRANSPORTER (5HTT), and ENGRAILED 2 (EN2) and discuss the relevant neuroscience, molecular genetics, and statistical results that suggest involvement of these genes in autism susceptibility. As will be shown, the statistical results from genetic analysis, when considered alone, are in apparent conflict across research groups. We use these three candidate genes to illustrate different problems in synthesizing results from non‐overlapping research groups examining the same problem.


American Journal of Medical Genetics | 2005

Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene.

Thomas H. Wassink; Joseph Piven; Veronica J. Vieland; Laura Jenkins; Rebecca S. Frantz; Christopher W. Bartlett; Rhinda Goedken; Deb Childress; M. Anne Spence; Moyra Smith; Val C. Sheffield

Autism is a highly heritable neurodevelopmental syndrome with a complex genetic etiology for which no disease genes have yet been definitively identified. We ascertained three subjects with autism spectrum disorders and chromosome 2q37.3 terminal deletions, and refined the deletion breakpoint regions using polymorphism mapping and fluorescence in situ hybridization (FISH) probes. We then genotyped polymorphic markers downstream from the breakpoint region in a sample of autism affected sibling pair families. Both the chromosomal breakpoints and linkage analyses focused our attention on the gene centaurin gamma‐2 (CENTG2), an attractive candidate gene based also on its function and pattern of expression. We therefore assessed CENTG2 for its involvement in autism by (1) screening its exons for variants in 199 autistic and 160 non‐autistic individuals, and (2) genotyping and assessing intra‐genic polymorphisms for linkage and linkage disequilibrium (LD). The exon screen revealed a Ser → Gly substitution in one proband, an Arg → Gly substitution in another, and a number of additional variants unique to the autism families. No unique variants were found in the control subjects. The genotyping produced strong evidence for linkage from two intronic polymorphisms, with a maximum two‐point HLOD value of 3.96 and a posterior probability of linkage (PPL) of 51%. These results were contradicted, however, by substantially weaker evidence for linkage from multi‐point analyses and by no evidence of LD. We conclude, therefore, that 2q37.3 continues to be a region of interest for autism susceptibility, and that CENTG2 is an intriguing candidate gene that merits further scrutiny for its role in autism.


Journal of Child Psychology and Psychiatry | 2014

Who Is Afraid of Math? Two Sources of Genetic Variance for Mathematical Anxiety.

Zhe Wang; Sara A. Hart; Yulia Kovas; Sarah L. Lukowski; Brooke Soden; Lee A. Thompson; Robert Plomin; Gráinne McLoughlin; Christopher W. Bartlett; Ian M. Lyons; Stephen A. Petrill

BACKGROUND Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem solving and achievement. This study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. METHODS Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. RESULTS Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and nonfamilial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. CONCLUSIONS The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics and may extend to other areas of academic achievement.


American Journal of Human Genetics | 2005

Effects of Updating Linkage Evidence across Subsets of Data: Reanalysis of the Autism Genetic Resource Exchange Data Set

Christopher W. Bartlett; Rhinda Goedken; Veronica J. Vieland

Results of autism linkage studies have been difficult to interpret across research groups, prompting the use of ever-increasing sample sizes to increase power. However, increasing sample size by pooling disparate collections for a single analysis may, in fact, not increase power in the face of genetic heterogeneity. Here, we applied the posterior probability of linkage (PPL), a method designed specifically to analyze multiple heterogeneous data sets, to the Autism Genetic Resource Exchange collection of families by analyzing six clinically defined subsets of the data and updating the PPL sequentially over the subsets. Our results indicate a substantial probability of linkage to chromosome 1, which had been previously overlooked; our findings also provide a further characterization of the possible parent-of-origin effects at the 17q11 locus that were previously described in this sample. This analysis illustrates that the way in which heterogeneity is addressed in linkage analysis can dramatically affect the overall conclusions of a linkage study.


Life Sciences | 2012

Defining the Genetic Architecture of Human Developmental Language Impairment

Ning Li; Christopher W. Bartlett

Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene x gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language.


BMC Genetics | 2005

Two novel quantitative trait linkage analysis statistics based on the posterior probability of linkage: application to the COGA families.

Christopher W. Bartlett; Veronica J. Vieland

BackgroundIn this paper we apply two novel quantitative trait linkage statistics based on the posterior probability of linkage (PPL) to chromosome 4 from the GAW 14 COGA dataset. Our approaches are advantageous since they use the full likelihood, use full phenotypic information, do not assume normality at the population level or require population/sample parameter estimates; and like other forms of the PPL, they are specifically tailored to accumulate linkage evidence, either for or against linkage, across multiple sets of heterogeneous data.ResultsThe first statistic uses all quantitative trait (QT) information from the pedigree (QT-posterior probability of linkage, PPL); we applied the QT-PPL to the trait ecb21 (resting electroencephalogram). The second statistic allows simultaneous incorporation of dichotomous trait data into the QT analysis via a threshold model (QTT-PPL); we applied the QTT-PPL to combined data on ecb21 and ALDX1. We obtained a QT-PPL of 96% at GABRB1 and a QT-PPL of 18% at FABP2 while the QTT-PPL was 4% and 2% at the same two loci, respectively. By comparison, the variance-components (VC) method, as implemented in SOLAR, yielded multipoint VC LOD scores of 2.05 and 2.21 at GABRB1 and FABP2, respectively; no other VC LODs were greater than 2.ConclusionThe QTT-PPL was only 4% at GABARB1, which might suggest that the underlying ecb21 gene does not also cause ALDX1, although features of the data complicate interpretation of this result.


Behavior Genetics | 2012

Heritability Across the Distribution: An Application of Quantile Regression

Jessica A. R. Logan; Stephen A. Petrill; Sara A. Hart; Christopher Schatschneider; Lee A. Thompson; Kirby Deater-Deckard; Laura S. DeThorne; Christopher W. Bartlett

We introduce a new method for analyzing twin data called quantile regression. Through the application presented here, quantile regression is able to assess the genetic and environmental etiology of any skill or ability, at multiple points in the distribution of that skill or ability. This method is compared to the Cherny et al. (Behav Genet 22:153–162, 1992) method in an application to four different reading-related outcomes in 304 pairs of first-grade same sex twins enrolled in the Western Reserve Reading Project. Findings across the two methods were similar; both indicated some variation across the distribution of the genetic and shared environmental influences on non-word reading. However, quantile regression provides more details about the location and size of the measured effect. Applications of the technique are discussed.


Human Heredity | 2010

Increasing Genotype-Phenotype Model Determinism: Application to Bivariate Reading/Language Traits and Epistatic Interactions in Language-Impaired Families

Tabatha R. Simmons; Judy F. Flax; Marco A. Azaro; Jared E. Hayter; Laura M. Justice; Stephen A. Petrill; Anne S. Bassett; Paula Tallal; Linda M. Brzustowicz; Christopher W. Bartlett

While advances in network and pathway analysis have flourished in the era of genome-wide association analysis, understanding the genetic mechanism of individual loci on phenotypes is still readily accomplished using genetic modeling approaches. Here, we demonstrate two novel genotype-phenotype models implemented in a flexible genetic modeling platform. The examples come from analysis of families with specific language impairment (SLI), a failure to develop normal language without explanatory factors such as low IQ or inadequate environment. In previous genome-wide studies, we observed strong evidence for linkage to 13q21 with a reading phenotype in language-impaired families. First, we elucidate the genetic architecture of reading impairment and quantitative language variation in our samples using a bivariate analysis of reading impairment in affected individuals jointly with language quantitative phenotypes in unaffected individuals. This analysis largely recapitulates the baseline analysis using the categorical trait data (posterior probability of linkage (PPL) = 80%), indicating that our reading impairment phenotype captured poor readers who also have low language ability. Second, we performed epistasis analysis using a functional coding variant in the brain-derived neurotrophic factor (BDNF) gene previously associated with reduced performance on working memory tasks. Modeling epistasis doubled the evidence on 13q21 and raised the PPL to 99.9%, indicating that BDNF and 13q21 susceptibility alleles are jointly part of the genetic architecture of SLI. These analyses provide possible mechanistic insights for further cognitive neuroscience studies based on the models developed herein.

Collaboration


Dive into the Christopher W. Bartlett's collaboration.

Top Co-Authors

Avatar

Veronica J. Vieland

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liping Hou

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Li

Nationwide Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge