Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher W. Clark is active.

Publication


Featured researches published by Christopher W. Clark.


Journal of the Acoustical Society of America | 2000

Recognizing transient low-frequency whale sounds by spectrogram correlation

David K. Mellinger; Christopher W. Clark

A method is described for the automatic recognition of transient animal sounds. Automatic recognition can be used in wild animal research, including studies of behavior, population, and impact of anthropogenic noise. The method described here, spectrogram correlation, is well-suited to recognition of animal sounds consisting of tones and frequency sweeps. For a sound type of interest, a two-dimensional synthetic kernel is constructed and cross-correlated with a spectrogram of a recording, producing a recognition function--the likelihood at each point in time that the sound type was present. A threshold is applied to this function to obtain discrete detection events, instants at which the sound type of interest was likely to be present. An extension of this method handles the temporal variation commonly present in animal sounds. Spectrogram correlation was compared to three other methods that have been used for automatic call recognition: matched filters, neural networks, and hidden Markov models. The test data set consisted of bowhead whale (Balaena mysticetus) end notes from songs recorded in Alaska in 1986 and 1988. The method had a success rate of about 97.5% on this problem, and the comparison indicated that it could be especially useful for detecting a call type when relatively few (5-200) instances of the call type are known.


PLOS ONE | 2011

Beaked Whales Respond to Simulated and Actual Navy Sonar

Peter L. Tyack; Walter M. X. Zimmer; David Moretti; Brandon L. Southall; Diane Claridge; John W. Durban; Christopher W. Clark; Angela D'Amico; Nancy DiMarzio; Susan Jarvis; Elena McCarthy; Ronald Morrissey; Jessica Ward; Ian L. Boyd

Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainvilles beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.


Conservation Biology | 2012

A New Context‐Based Approach to Assess Marine Mammal Behavioral Responses to Anthropogenic Sounds

W.T. Ellison; Brandon L. Southall; Christopher W. Clark; Adam S. Frankel

Acute effects of anthropogenic sounds on marine mammals, such as from military sonars, energy development, and offshore construction, have received considerable international attention from scientists, regulators, and industry. Moreover, there has been increasing recognition and concern about the potential chronic effects of human activities (e.g., shipping). It has been demonstrated that increases in human activity and background noise can alter habitats of marine animals and potentially mask communications for species that rely on sound to mate, feed, avoid predators, and navigate. Without exception, regulatory agencies required to assess and manage the effects of noise on marine mammals have addressed only the acute effects of noise on hearing and behavior. Furthermore, they have relied on a single exposure metric to assess acute effects: the absolute sound level received by the animal. There is compelling evidence that factors other than received sound level, including the activity state of animals exposed to different sounds, the nature and novelty of a sound, and spatial relations between sound source and receiving animals (i.e., the exposure context) strongly affect the probability of a behavioral response. A more comprehensive assessment method is needed that accounts for the fact that multiple contextual factors can affect how animals respond to both acute and chronic noise. We propose a three-part approach. The first includes measurement and evaluation of context-based behavioral responses of marine mammals exposed to various sounds. The second includes new assessment metrics that emphasize relative sound levels (i.e., ratio of signal to background noise and level above hearing threshold). The third considers the effects of chronic and acute noise exposure. All three aspects of sound exposure (context, relative sound level, and chronic noise) mediate behavioral response, and we suggest they be integrated into ecosystem-level management and the spatial planning of human offshore activities.


Journal of the Acoustical Society of America | 2007

Short- and long-term changes in right whale calling behavior: The potential effects of noise on acoustic communication

Susan E. Parks; Christopher W. Clark; Peter L. Tyack

The impact of anthropogenic noise on marine mammals has been an area of increasing concern over the past two decades. Most low-frequency anthropogenic noise in the ocean comes from commercial shipping which has contributed to an increase in ocean background noise over the past 150 years. The long-term impacts of these changes on marine mammals are not well understood. This paper describes both short- and long-term behavioral changes in calls produced by the endangered North Atlantic right whale (Eubalaena glacialis) and South Atlantic right whale (Eubalaena australis) in the presence of increased low-frequency noise. Right whales produce calls with a higher average fundamental frequency and they call at a lower rate in high noise conditions, possibly in response to masking from low-frequency noise. The long-term changes have occurred within the known lifespan of individual whales, indicating that a behavioral change, rather than selective pressure, has resulted in the observed differences. This study provides evidence of a behavioral change in sound production of right whales that is correlated with increased noise levels and indicates that right whales may shift call frequency to compensate for increased band-limited background noise.


Archive | 2000

Communication and Acoustic Behavior of Dolphins and Whales

Peter L. Tyack; Christopher W. Clark

About 70 million years ago, the terrestrial ancestors of whales and dolphins reentered the ocean where life originally began. Not only did this require dramatic shifts in locomotion for swimming and in respiration for diving, but the ocean also presented a very different sensory environment. The explosive way in which cetaceans breathe reduced the usefulness of olfaction, which has limited utility underwater. Light propagates great distances rapidly in air, which makes vision particularly useful for sensing distant objects on land or in air, but light does not propagate well in water. Few objects can be seen underwater at ranges of more than a few tens of meters. By contrast, sound travels particularly well underwater. The potential for the acoustic modality to sense distant sources of sound is highlighted by recent discoveries that we can detect low-frequency calls of whales at ranges of hundreds and sometimes thousands of kilometers (Costa 1993; Clark 1994b, 1995).


Animal Conservation | 2001

Effect of anthropogenic low‐frequency noise on the foraging ecology of Balaenoptera whales

Donald A. Croll; Christopher W. Clark; John Calambokidis; William T. Ellison; Bernie R. Tershy

The human contribution to ambient noise in the ocean has increased over the past 50 years, and is dominated by low-frequency (LF) sound (frequencies <1000 Hz) from shipping, oil and gas devel- opment, defence-related and research activities. Mysticete whales, including six endangered species, may be at risk from this noise pollution because all species produce and probably perceive low-fre- quency sound. We conducted a manipulative field experiment to test the effects of loud, LF noise on foraging fin blue (B. musculus) and (Balaenoptera physalus) whales off San Nicolas Island, California. Naive observers used a combination of attached tracking devices, ship-based surveys, aerial surveys, photo-identification and passive monitoring of vocal behaviour to examine the behaviour and distri- bution of whales when a loud LF source (US Navy SURTASS LFA) was and was not transmitting. During transmission, 12-30% of the estimated received levels of LFA of whales in the study area exceeded 140 dB re 1 µPa. However, whales continued to be seen foraging in the region. Overall, whale encounter rates and diving behaviour appeared to be more strongly linked to changes in prey abundance associated with oceanographic parameters than to LF sound transmissions. In some cases, whale vocal behaviour was significantly different between experimental and non-experimental peri- ods. However, these differences were not consistent and did not appear to be related to LF sound transmissions. At the spatial and temporal scales examined, we found no obvious responses of whales to a loud, anthropogenic, LF sound. We suggest that the cumulative effects of anthropogenic LF noise over larger temporal and spatial scales than examined here may be a more important consideration for management agencies.


Journal of the Acoustical Society of America | 2000

Calibration and comparison of the acoustic location methods used during the spring migration of the bowhead whale, Balaena mysticetus, off Pt. Barrow, Alaska, 1984-1993

Christopher W. Clark; William T. Ellison

Between 1984 and 1993, visual and acoustic methods were combined to census the Bering-Chukchi-Beaufort bowhead whale, Balaena mysticetus, population. Passive acoustic location was based on arrival-time differences of transient bowhead sounds detected on sparse arrays of three to five hydrophones distributed over distances of 1.5-4.5 km along the ice edge. Arrival-time differences were calculated from either digital cross correlation of spectrograms (old method), or digital cross correlation of time waveforms (new method). Acoustic calibration was conducted in situ in 1985 at five sites with visual site position determined by triangulation using two theodolites. The discrepancy between visual and acoustic locations was <1%-5% of visual range and less than 0.7 degrees of visual bearing for either method. Comparison of calibration results indicates that the new method yielded slightly more precise and accurate positions than the old method. Comparison of 217 bowhead whale call locations from both acoustic methods showed that the new method was more precise, with location errors 3-4 times smaller than the old method. Overall, low-frequency bowhead transients were reliably located out to ranges of 3-4 times array size. At these ranges in shallow water, signal propagation appears to be dominated by the fundamental mode and is not corrupted by multipath.


Conservation Biology | 2012

Quantifying Loss of Acoustic Communication Space for Right Whales in and around a U.S. National Marine Sanctuary

Christopher W. Clark; Sofie M. Van Parijs; Adam S. Frankel; Dimitri Ponirakis

The effects of chronic exposure to increasing levels of human-induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human-induced sound on contact-calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km(2) ) and time period (peak feeding time). We used an array of temporary, bottom-mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel-tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal-to-noise ratio and the assumed recognition differential) for contact-calling right whales was negative (-1 dB) under current ambient noise levels and was further reduced (-2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63-67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10-min period. These results highlight the limitations of exposure-threshold (i.e., dose-response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide-ranging noise effects in emerging ocean-planning forums that seek to improve management of cumulative effects of noise on marine species and their habitats.


Archive | 1990

Acoustic Behavior of Mysticete Whales

Christopher W. Clark

There are eleven species of mysticetes (baleen whales), and sounds have been recorded from all but the pygmy right whale (Caperea marginata). The greatest amount of acoustic information has been gathered for the bowhead (Balaena mysticetus), gray (Eschrichtius robustus), humpback (Megaptera novaeancrliae), and right (Eubalaena australis and E.glacialis) whales, because they are coastal, relatively vocal, and more social among the mysticetes. The more pelagic species, which include the blue (Balaenoptera musculus), fin (Balaenoptera physalus), Bryde’s (Balaenoptera edeni), sei (Balaenoptera borealis), and minke (Balaenoptera acutorostrata) whales, are more difficult to observe and are less vocal than the coastal species. The most recent review of mysticete sounds was presented by Thompson et al. (1979; but see Winn and Perkins, 1976). Herman and Tavolga (1980) discuss mysticete sounds from the perspective of communication. Ridgway and Harrison (1985) provide some further descriptions of sound production for some of the mysticetes, while Payne (1983) presents a number of chapters on specific aspects of acoustic behavior in southern right whales and humpback whales.


Journal of the Acoustical Society of America | 2009

Variability in ambient noise levels and call parameters of North Atlantic right whales in three habitat areas

Susan E. Parks; Ildar R. Urazghildiiev; Christopher W. Clark

The North Atlantic right whale inhabits the coastal waters off the east coasts of the United States and Canada, areas characterized by high levels of shipping and fishing activities. Acoustic communication plays an important role in the social behavior of these whales and increases in low-frequency noise may be leading to changes in their calling behavior. This study characterizes the ambient noise levels, including both natural and anthropogenic sources, and right whale upcall parameters in three right whale habitat areas. Continuous recordings were made seasonally using autonomous bottom-mounted recorders in the Bay of Fundy, Canada (2004, 2005), Cape Cod Bay, (2005, 2006), and off the coast of Georgia (2004-2005, 2006-2007). Consistent interannual trends in noise parameters were found for each habitat area, with both the band level and spectrum level measurements higher in the Bay of Fundy than in the other areas. Measured call parameters varied between habitats and between years within the same habitat area, indicating that habitat area and noise levels alone are not sufficient to predict variability in call parameters. These results suggest that right whales may be responding to the peak frequency of noise, rather than the absolute noise level in their environment.

Collaboration


Dive into the Christopher W. Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William T. Ellison

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter L. Tyack

Sea Mammal Research Unit

View shared research outputs
Researchain Logo
Decentralizing Knowledge