Christopher W. Cutler
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher W. Cutler.
Journal of Immunology | 2001
Ravi Jotwani; Anna Karolina Palucka; Montasr Al-Quotub; Mahyar Nouri-Shirazi; Jay Kim; Diana Bell; Jacques F Banchereau; Christopher W. Cutler
Previous studies have analyzed the lymphoid and myeloid foci within the gingival mucosa in health and chronic periodontitis (CP); however, the principal APCs responsible for the formation and organizational structure of these foci in CP have not been defined. We show that in human CP tissues, CD1a+ immature Langerhans cells predominantly infiltrate the gingival epithelium, whereas CD83+ mature dendritic cells (DCs) specifically infiltrate the CD4+ lymphoid-rich lamina propria. In vivo evidence shows that exacerbation of CP results in increased levels of proinflammatory cytokines that mediate DC activation/maturation, but also of counterregulatory cytokines that may prevent a Th-polarized response. Consistently, in vitro-generated monocyte-derived DCs pulsed with Porphyromonas gingivalis strain 381 or its LPS undergo maturation, up-regulate accessory molecules, and release proinflammatory (IL-1β, PGE2) and Th (IL-10, IL-12) cytokines. Interestingly, the IL-10:IL-12 ratio elicited from P. gingivalis-pulsed DCs was 3-fold higher than that from Escherichia coli-pulsed DCs. This may account for the significantly (p < 0.05) lower proliferation of autologous CD4+ T cells and reduced release of IFN-γ elicited by P. gingivalis-pulsed DCs. Taken together, these findings suggest a previously unreported mechanism for the pathophysiology of CP, involving the activation and in situ maturation of DCs by the oral pathogen P. gingivalis, leading to release of counterregulatory cytokines and the formation of T cell-DC foci.
Infection and Immunity | 2005
Manoj Muthukuru; Ravi Jotwani; Christopher W. Cutler
ABSTRACT The oral mucosa is exposed to a high density and diversity of gram-positive and gram-negative bacteria, but very little is known about how immune homeostasis is maintained in this environment, particularly in the inflammatory disease chronic periodontitis (CP). The cells of the innate immune response recognize bacterial structures via the Toll-like receptors (TLR). This activates intracellular signaling and transcription of proteins essential for the induction of an adaptive immune response; however, if unregulated, it can lead to destructive inflammatory responses. Using single-immunoenzyme labeling, we show that the human oral mucosa (gingiva) is infiltrated by large numbers of TLR2+ and TLR4+ cells and that their numbers increase significantly in CP, relative to health (P < 0.05, Students t test). We also show that the numbers of TLR2+ but not TLR4+ cells increase linearly with inflammation (r2 = 0.33, P < 0.05). Double-immunofluorescence analysis confirms that TLR2 is coexpressed by monocytes (MC)/macrophages (mφ) in situ. Further analysis of gingival tissues by quantitative real-time PCR, however, indicates that despite a threefold increase in the expression of interleukin-1β (IL-1β) mRNA during CP, there is significant (30-fold) downregulation of TLR2 mRNA (P < 0.05, Students t test). Also showing similar trends are the levels of TLR4 (ninefold reduction), TLR5 (twofold reduction), and MD-2 (sevenfold reduction) mRNA in CP patients compared to healthy persons, while the level of CD14 was unchanged. In vitro studies with human MC indicate that MC respond to an initial stimulus of lipopolysaccharide (LPS) from Porphyromonas gingivalis (PgLPS) or Escherichia coli (EcLPS) by upregulation of TLR2 and TLR4 mRNA and protein; moreover, IL-1β mRNA is induced and tumor necrosis factor alpha (TNF-α), IL-10, IL-6, and IL-8 proteins are secreted. However, restimulation of MC with either PgLPS or EcLPS downregulates TLR2 and TLR4 mRNA and protein and IL-1β mRNA and induces a ca. 10-fold reduction in TNF-α secretion, suggesting the induction of endotoxin tolerance by either LPS. Less susceptible to tolerance than TNF-α were IL-6, IL-10, and IL-8. These studies suggest that certain components of the innate oral mucosal immune response, most notably TLRs and inflammatory cytokines, may become tolerized during sustained exposure to bacterial structures such as LPS and that this may be one mechanism used in the oral mucosa to attempt to regulate local immune responses.
European Journal of Immunology | 2003
Ravi Jotwani; Bali Pulendran; Sudhanshu Agrawal; Christopher W. Cutler
Understanding how mucosal pathogens modulate the immune response may facilitate the development of vaccines for disparate human diseases. In the present study, human monocyte‐derived DC (MDDC)were pulsed with LPS of the oral pathogen Porphyromonas gingivalis and Escherichia coli 25922 and analyzed for: (i) production of Th‐biasing/inflammatory cytokines; (ii) maturation/costimulatory molecules; and (iii) induction of allogeneic CD4+ and naive CD45RA+ T cell proliferation and release of Th1 or Th2 cytokines. We show that E.u2004coli LPS‐pulsed MDDC released Th1‐biasing cytokines — consisting of high levels of IL‐12u2004p70, IFN‐γ‐inducible protein 10 (IP‐10) – but also TNF‐α, IL‐10, IL‐6 and IL‐1β. In contrast, no IL‐12u2004p70 or IP‐10, and lower levels of TNF‐α and IL‐10 were induced by P. gingivalis LPS. These differences were sustained at LPS doses that yielded nearly equivalent maturation of MDDC; moreover the T cell response was consistent: E.u2004coli LPS‐pulsed MDDC induced higher T cell proliferation, and T cells released more IFN‐γ and IL‐2, but less IL‐5 than T cells co‐cultured with P. gingivalis LPS pulsed‐MDDC. IL‐13 was secreted by naive CD45RA+CD45RO–CD4+ T cells in response to P. gingivalisLPS‐pulsed MDDC. These results suggest that human MDDC can be polarized by LPS from the mucosal pathogen P. gingivalis to induce a Th2 effector response in vitro.
Infection and Immunity | 2004
Ravi Jotwani; Christopher W. Cutler
ABSTRACT Porphyromonas gingivalis is a fimbriated mucosal pathogen implicated in chronic periodontitis (CP). The fimbriae are required for invasion of the gingival mucosa and for induction of CP in animal models of periodontitis. CP is associated with infection of immature dendritic cells (DCs) by P. gingivalis in situ and with increased numbers of dermal DCs (DDCs) and mature DCs in the lamina propria. The role of fimbriae in gaining entry into human DCs and how this modulates the inflammatory and effector immune responses, however, have not been explored. To address this, we generated monocyte-derived DCs (MDDCs) in vitro which phenotypically and functionally resemble DDCs. We show here that virulent fimbriated P. gingivalis 381, in contrast to its fimbria-deficient mutant, P. gingivalis DPG3, efficiently gains entry to MDDCs in a manner dependent on active cell metabolism and cytoskeletal rearrangement. In addition, uptake of 381, unlike DPG3, induces DCs to undergo maturation, upregulate costimulatory molecules, and secrete inflammation cytokines interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, IL-10, and IL-12. Moreover, MDDCs pulsed with 381 also stimulated a higher autologous mixed lymphocyte reaction and induced a Th1-type response, with gamma interferon (IFN-γ) being the main cytokine. Monocytes used as controls demonstrated fimbria-dependent uptake of 381 as well but produced low levels of inflammatory cytokines compared to MDDCs. When MDDCs were pulsed with recombinant fimbrillin of P. gingivalis (10 μg/ml), maturation of MDDCs was also induced; moreover, matured MDDCs induced proliferation of autologous CD4+ T cells and release of IFN-γ. Thus, these results establish the significance of P. gingivalis fimbriae in the uptake of P. gingivalis by MDDCs and in induction of immunostimulatory Th1 responses.
Infection and Immunity | 2001
Christopher W. Cutler; Ravi Jotwani; Bali Pulendran
Dendritic cells (DCs) consist of a family of antigen-presenting cells (APC) that patrol all tissues of the body with the possible exceptions of the brain and testes. DCs function to capture bacteria and other pathogens for processing and presentation to T cells in the secondary lymphoid organs ([2][
Fems Immunology and Medical Microbiology | 2010
Ravi Jotwani; Sridhar V.K. Eswaran; Surinder S. Moonga; Christopher W. Cutler
Matrix metalloproteinase-9 (MMP-9) cleaves collagen, allowing leukocytes to traffic toward the vasculature and the lymphatics. When MMP-9 is unregulated by tissue inhibitor of metalloproteinase-1 (TIMP-1), this can lead to tissue destruction. Dendritic cells (DCs) infiltrate the oral mucosa increasingly in chronic periodontitis, characterized by infection with several pathogens including Porphyromonas gingivalis. In this study, human monocyte-derived DCs were pulsed with different doses of lipopolysaccharide of P. gingivalis 381 and of Escherichia coli type strain 25922, as well as whole live isogenic fimbriae-deficient mutant strains of P. gingivalis 381. Levels of induction of MMP-9 and TIMP-1, as well as interleukin-10 (IL-10), which reportedly inhibits MMP-9 induction, were measured by several approaches. Our results reveal that lipopolysaccharide of P. gingivalis, compared with lipopolysaccharide from E. coli type strain 25922, is a relatively potent inducer of MMP-9, but a weak inducer of TIMP-1, contributing to a high MMP-9/TIMP-1 ratio.Whole live P. gingivalis strain 381, major fimbriae mutant DPG-3 and double mutant MFB were potent inducers of MMP-9, but minor fimbriae mutant MFI was not. MMP-9 induction was inversely proportional to IL-10 induction. These results suggest that lipopolysaccharide and the minor and the major fimbriae of P. gingivalis may play distinct roles in induction by DCs of MMP-9, a potent mediator of local tissue destruction and leukocyte trafficking.
Journal of Bacteriology | 2010
Amir E. Zeituni; William McCaig; Elizabeth Scisci; David G. Thanassi; Christopher W. Cutler
We recently reported that the oral mucosal pathogen Porphyromonas gingivalis, through its 67-kDa Mfa1 (minor) fimbria, targets the C-type lectin receptor DC-SIGN for invasion and persistence within human monocyte-derived dendritic cells (DCs). The DCs respond by inducing an immunosuppressive and Th2-biased CD4(+) T-cell response. We have now purified the native minor fimbria by ion-exchange chromatography and sequenced the fimbria by tandem mass spectrometry (MS/MS), confirming its identity and revealing two putative N-glycosylation motifs as well as numerous putative O-glycosylation sites. We further show that the minor fimbria is glycosylated by ProQ staining and that glycosylation is partially removed by treatment with beta(1-4)-galactosidase, but not by classic N- and O-linked deglycosidases. Further monosaccharide analysis by gas chromatography-mass spectrometry (GC-MS) confirmed that the minor fimbria contains the DC-SIGN-targeting carbohydrates fucose (1.35 nmol/mg), mannose (2.68 nmol/mg), N-acetylglucosamine (2.27 nmol/mg), and N-acetylgalactosamine (0.652 nmol/mg). Analysis by transmission electron microscopy revealed that the minor fimbria forms fibers approximately 200 nm in length that could be involved in targeting or cross-linking DC-SIGN. These findings shed further light on molecular mechanisms of invasion and immunosuppression by this unique mucosal pathogen.
Infection and Immunity | 2006
Manoj Muthukuru; Christopher W. Cutler
ABSTRACT Our group and others have shown in vitro that repeated exposure of human mononuclear cells (MNC) to lipopolysaccharide can induce endotoxin tolerance, evidenced by downregulation of TLR2 and TLR4 mRNA and surface protein; moreover, the ability of the MNC to secrete inflammatory cytokines is reduced. In situ studies performed on diseased and healthy gingiva suggest that a similar pattern of endotoxin tolerance occurs in human oral mucosa with chronic periodontitis (CP). We hypothesized that this represents a fundamental immunoregulatory mechanism to restore immune homeostasis and protect the host from further tissue damage. In the current study, we extend these published studies by providing evidence that Src homology 2 containing inositol phosphatase, an inhibitor of NF-κB activation and a negative regulator of the immune response, is upregulated in the oral mucosa during CP compared to its level during gingival health. We have also isolated MNC from patients with CP and those with healthy gingiva and show that MNC from CP subjects have a reduced capacity to upregulate TLR2, TLR4, and interleukin-1β in response to endotoxin. Thus, we provide more definitive evidence for a basic mechanism of immunoregulation in the oral mucosa.
Journal of Oral Microbiology | 2010
Amir E. Zeituni; Julio Carrion; Christopher W. Cutler
Abstract An estimated 80 million US adults have one or more types of cardiovascular diseases. Atherosclerosis is the single most important contributor to cardiovascular diseases; however, only 50% of atherosclerosis patients have currently identified risk factors. Chronic periodontitis, a common inflammatory disease, is linked to an increased cardiovascular risk. Dendritic cells (DCs) are potent antigen presenting cells that infiltrate arterial walls and may destabilize atherosclerotic plaques in cardiovascular disease. While the source of these DCs in atherosclerotic plaques is presently unclear, we propose that dermal DCs from peripheral inflamed sites such as CP tissues are a potential source. This review will examine the role of the opportunistic oral pathogen Porphyromonas gingivalis in invading DCs and stimulating their mobilization and misdirection through the bloodstream. Based on our published observations, combined with some new data, as well as a focused review of the literature we will propose a model for how P. gingivalis may exploit DCs to gain access to systemic circulation and contribute to coronary artery disease. Our published evidence supports a significant role for P. gingivalis in subverting normal DC function, promoting a semimature, highly migratory, and immunosuppressive DC phenotype that contributes to the inflammatory development of atherosclerosis and, eventually, plaque rupture.
Infection and Immunity | 2008
Manoj Muthukuru; Christopher W. Cutler
ABSTRACT The innate and the adaptive arms of the mucosal immune system must be coordinated to facilitate the control of pathogenic invasion while maintaining immune homeostasis. Toll-like receptors, able to activate the cell to produce bactericidal and inflammatory cytokines but also able to upregulate antigen (Ag)-presenting and costimulatory molecules, are particularly important in this regard. We have previously shown that the chronically infected oral mucosa is in a state of endotoxin tolerance, as evidenced by the downregulation of Toll-like receptors 2 and 4 and of inflammatory cytokines and the upregulation of SH2-containing inositol phosphatase, an inhibitor of NF-κB signaling. In the present study, we hypothesized that endotoxin tolerance would influence the ability of human macrophages to engage in Ag capture and killing of the oral pathogen Porphyromonas gingivalis and to upregulate costimulatory molecules and stimulate autologous T-cell proliferation. We show that uptake, but not killing, of P. gingivalis 381 is enhanced by endotoxin tolerance. Reduced killing is possibly due to a reduction of the intracellular lysosomes. We further show that the expression of the Ag-presenting molecule HLA-DR and costimulatory molecules CD40 and CD86 is dampened by endotoxin tolerance to the constitutive level. This, along with our previous evidence for reduction in immunostimulatory cytokines, is consistent with the observed decrease in the induction of autologous CD4+ T-cell proliferation by endotoxin-tolerized macrophages. Overall, these studies suggest that endotoxin tolerance, as observed in the inflamed oral mucosa, potentiates the innate Ag capture activity of macrophages but diminishes the potential of human macrophages to initiate the adaptive immune response. In conclusion, endotoxin tolerance, while helpful in bacterial clearance and in surmounting excessive inflammatory tissue damage, could potentially reduce the (protective) adaptive immune response during chronic infections such as periodontitis.