Christopher W. Pinion
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher W. Pinion.
Nano Letters | 2012
Joseph D. Christesen; Xing Zhang; Christopher W. Pinion; Thomas A. Celano; Cory J. Flynn; James F. Cahoon
Semiconductor nanowires (NWs) are a developing platform for electronic and photonic technologies, and many demonstrated devices utilize a p-type/n-type (p-n) junction encoded along either the axial or radial directions of the wires. These miniaturized junctions enable a diverse range of functions, from sensors to solar cells, yet the physics of the devices has not been thoroughly evaluated. Here, we present finite-element modeling of axial and radial Si NW p-n junctions with total diameters of ~240 nm and donor/acceptor doping levels ranging from 10(16) to 10(20) cm(-3). We evaluate the photovoltaic performance of horizontally oriented NWs under 1 sun illumination and compare simulated current-voltage data to experimental measurements, permitting detailed analysis of NW performance, limitations, and prospect as a technology for solar energy conversion. Although high surface-to-volume ratios are cited as detrimental to NW performance, radial p-n junctions are surprisingly insensitive to surface recombination, with devices supporting open-circuit voltages (V(OC)) of ~0.54 V and internal quantum efficiencies of 95% even with high surface recombination velocities (SRVs) of 10(5) cm/s. Axial devices, in which the depletion region is exposed to the surface, are far more sensitive to SRV, requiring substantially lower values of 10(3)-10(4) cm/s to produce the same level of performance. For low values of the SRV (<100 cm/s), both axial and radial NWs can support V(OC) values of >0.70 V if the bulk minority carrier lifetime is 1 μs or greater. Experimental measurements on NWs grown by a vapor-liquid-solid mechanism yield V(OC) of 0.23 and 0.44 V for axial and radial NWs, respectively, and show that axial devices are limited by a SRV of ~7 × 10(3) cm/s while radial devices are limited by a bulk lifetime of ~3 ns. The simulations show that with further development the electrical characteristics of 200-300 nm Si NWs are sufficient to support power-conversion efficiencies of 15-25%. The analysis presented here can be generalized to other semiconductor homo- and heterojunctions, and we expect that insights from finite element modeling will serve as a powerful method to guide the design of advanced nanoscale structures.
Nano Letters | 2013
Michelle M. Gabriel; Justin R. Kirschbrown; Joseph D. Christesen; Christopher W. Pinion; David F. Zigler; Erik M. Grumstrup; Brian P. Mehl; Emma E. M. Cating; James F. Cahoon; John M. Papanikolas
We have developed a pump-probe microscope capable of exciting a single semiconductor nanostructure in one location and probing it in another with both high spatial and temporal resolution. Experiments performed on Si nanowires enable a direct visualization of the charge cloud produced by photoexcitation at a localized spot as it spreads along the nanowire axis. The time-resolved images show clear evidence of rapid diffusional spreading and recombination of the free carriers, which is consistent with ambipolar diffusion and a surface recombination velocity of ∼10(4) cm/s. The free carrier dynamics are followed by trap carrier migration on slower time scales.
Journal of Physical Chemistry Letters | 2013
Xing Zhang; Christopher W. Pinion; Joseph D. Christesen; Cory J. Flynn; Thomas A. Celano; James F. Cahoon
The silicon p-n junction is the most successful solar energy technology to date, yet it accounts for a marginal percentage of worldwide energy production. To change the status quo, a disruptive technological breakthrough is needed. In this Perspective, we discuss the potential for complex silicon nanowires to serve as a platform for next-generation photovoltaic devices. We review the synthesis, electrical characteristics, and optical properties of core/shell silicon nanowires that are subwavelength in diameter and contain radial p-n junctions. We highlight the unique features of these nanowires, such as optical antenna effects that concentrate light and intense built-in electric fields that enable ultrafast charge-carrier separation. We advocate a paradigm in which nanowires are arranged in periodic horizontal arrays to form ultrathin devices. Unlike conventional planar silicon, nanowire structures provide the flexibility to incorporate multiple semiconductor, dielectric, and metallic materials in a single system, providing the foundation for a disruptive, unconventional solar energy technology.
Nano Letters | 2014
Michelle M. Gabriel; Erik M. Grumstrup; Justin R. Kirschbrown; Christopher W. Pinion; Joseph D. Christesen; David F. Zigler; Emma E. M. Cating; James F. Cahoon; John M. Papanikolas
Silicon nanowires incorporating p-type/n-type (p-n) junctions have been introduced as basic building blocks for future nanoscale electronic components. Controlling charge flow through these doped nanostructures is central to their function, yet our understanding of this process is inferred from measurements that average over entire structures or integrate over long times. Here, we have used femtosecond pump-probe microscopy to directly image the dynamics of photogenerated charge carriers in silicon nanowires encoded with p-n junctions along the growth axis. Initially, motion is dictated by carrier-carrier interactions, resulting in diffusive spreading of the neutral electron-hole cloud. Charge separation occurs at longer times as the carrier distribution reaches the edges of the depletion region, leading to a persistent electron population in the n-type region. Time-resolved visualization of the carrier dynamics yields clear, direct information on fundamental drift, diffusion, and recombination processes in these systems, providing a powerful tool for understanding and improving materials for nanotechnology.
ACS Nano | 2014
Christopher W. Pinion; David P. Nenon; Joseph D. Christesen; James F. Cahoon
The vapor-liquid-solid (VLS) mechanism is widely used for the synthesis of semiconductor nanowires (NWs), yet several aspects of the mechanism are not fully understood. Here, we present comprehensive experimental measurements on the growth rate of Au-catalyzed Si NWs over a range of temperatures (365-480 °C), diameters (30-200 nm), and pressures (0.1-1.6 Torr SiH4). We develop a kinetic model of VLS growth that includes (1) Si incorporation into the liquid Au-Si catalyst, (2) Si evaporation from the catalyst surface, and (3) Si crystallization at the catalyst-NW interface. This simple model quantitatively explains growth rate data collected over more than 65 distinct synthetic conditions. Surprisingly, upon increasing the temperature and/or pressure, the analysis reveals an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. The identification of two distinct growth regimes provides insight into the synthetic conditions needed for specific NW-based technologies, and our kinetic model provides a straightforward framework for understanding VLS growth with a range of metal catalysts and semiconductor materials.
Nano Letters | 2014
Erik M. Grumstrup; Michelle M. Gabriel; Christopher W. Pinion; James K. Parker; James F. Cahoon; John M. Papanikolas
Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump-probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge-carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron-hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge-carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon.
Nano Letters | 2016
Thomas A. Celano; David J. Hill; Xing Zhang; Christopher W. Pinion; Joseph D. Christesen; Cory J. Flynn; James R. McBride; James F. Cahoon
Semiconductor nanowires (NWs) have been demonstrated as a potential platform for a wide-range of technologies, yet a method to interconnect functionally encoded NWs has remained a challenge. Here, we report a simple capillarity-driven and self-limited welding process that forms mechanically robust and Ohmic inter-NW connections. The process occurs at the point-of-contact between two NWs at temperatures 400-600 °C below the bulk melting point of the semiconductor. It can be explained by capillarity-driven surface diffusion, inducing a localized geometrical rearrangement that reduces spatial curvature. The resulting weld comprises two fused NWs separated by a single, Ohmic grain boundary. We expect the welding mechanism to be generic for all types of NWs and to enable the development of complex interconnected networks for neuromorphic computation, battery and solar cell electrodes, and bioelectronic scaffolds.
ACS Nano | 2017
Seokhyoung Kim; David J. Hill; Christopher W. Pinion; Joseph D. Christesen; James R. McBride; James F. Cahoon
Vertically aligned semiconductor nanowires (NWs) have many potential applications for NW-based technologies, ranging from solar cells to intracellular sensors. Aligned NWs can be fabricated by top-down etching of planar wafers or synthesized from the bottom up using the vapor-liquid-solid (VLS) mechanism to induce epitaxial growth on lattice-matched substrates. The VLS process permits the modulation of dopants along the NW growth axis, which if combined with dopant-dependent wet-chemical etching, can be used to encode precise morphology. However, the synthesis of vertical and linear NWs with complex morphology is nontrivial, requiring control over multiple interdependent aspects of the VLS process. Here, we demonstrate sub-10 nm morphology in ⟨111⟩ epitaxial silicon (Si) NWs grown by the VLS mechanism on (111) Si substrates with gold (Au) catalysts. Using silane (SiH4), phosphine (PH3), and hydrochloric acid (HCl) precursor gases at 480 °C, precise morphology is encoded through abrupt phosphorus (P) dopant transitions, which are found to be less than 5 nm in width. The results highlight three mechanistic attributes of the process. First, NW growth in the ⟨111⟩ direction is found to be unstable at high SiH4 partial pressures and growth rates unless using HCl, which stabilizes NW growth through chlorination of the NW sidewall. Second, aggregated Au deposited on the NW surface by the VLS catalyst is found to be immobile on the chlorinated surface and to impede selective wet-chemical etching by potassium hydroxide (KOH) solution, preventing the design of precise morphology. Third, the aggregation of Au is found to be strongly dependent on the SiH4 partial pressure and NW growth rate, and values exceeding ∼100 mTorr and ∼150 nm/min, respectively, are required to minimize Au and thereby enable selective wet-chemical etching. Under optimized growth conditions, we find that abrupt, complex, and arbitrary dopant profiles and morphologies can be encoded in vertical Si NWs, and we expect that a variety of electronic and photonic applications can be realized with these designed nanostructures.
Journal of Materials Chemistry C | 2016
Christopher W. Pinion; Joseph D. Christesen; James F. Cahoon
Bottom-up, chemical methods to control the morphology of semiconductor nanostructures are a promising complement to the top-down fabrication techniques that currently dominate the semiconductor industry. Among bottom-up techniques, nanowire (NW) growth using the vapor–liquid–solid (VLS) mechanism has received great attention. In this Highlight article, we review our recent progress toward understanding the microscopic processes that govern VLS NW growth, doping, and dopant modulation. Quantitative measurements of Si NW growth rates and P dopant profiles under a range of synthetic conditions are interpreted with a kinetic analysis of VLS growth that includes the microscopic reactions of incorporation, evaporation, and crystallization. The analysis allows us to identify synthetic conditions that yield both diameter-independent growth rates and abrupt, diameter-independent dopant transitions. The optimized conditions allow precise, sub-10 nm morphology to be encoded along the growth axis of Si NWs, enabling the bottom-up chemical nanofabrication of complex structures that are typically fabricated by high-resolution, top-down lithography.
Nano Letters | 2016
Emma E. M. Cating; Christopher W. Pinion; Erika Van Goethem; Michelle M. Gabriel; James F. Cahoon; John M. Papanikolas
Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NWs local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.