Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Whidbey is active.

Publication


Featured researches published by Christopher Whidbey.


Journal of Experimental Medicine | 2013

A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

Christopher Whidbey; Maria Isabel Harrell; Kellie Burnside; Lisa Ngo; Alexis K. Becraft; Lakshminarayan M. Iyer; L. Aravind; Jane Hitti; Kristina M. Adams Waldorf; Lakshmi Rajagopal

Group B Streptococcus invades human amniotic epithelial cells using a hemolytic pigment.


Mbio | 2016

Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth

Jay Vornhagen; Phoenicia Quach; Erica Boldenow; Sean Merillat; Christopher Whidbey; Lisa Y. Ngo; Km Adams Waldorf; Lakshmi Rajagopal

ABSTRACT Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS), or Streptococcus agalactiae. However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth. IMPORTANCE GBS are a family of bacteria that frequently colonize the vagina of pregnant women. In some cases, GBS ascend from the vagina into the uterine space, leading to fetal injury and preterm birth. Unfortunately, little is known about the mechanisms underlying ascending GBS infection. In this study, we show that a GBS virulence factor, HylB, shows higher activity in strains isolated from cases of preterm birth than those isolates from rectovaginal swabs of healthy women. We discovered that GBS rely on HylB to avoid immune detection in uterine tissue, but not placental tissue, which leads to increased rates of fetal injury and preterm birth. These studies provide novel insight into the underlying mechanisms of ascending infection. GBS are a family of bacteria that frequently colonize the vagina of pregnant women. In some cases, GBS ascend from the vagina into the uterine space, leading to fetal injury and preterm birth. Unfortunately, little is known about the mechanisms underlying ascending GBS infection. In this study, we show that a GBS virulence factor, HylB, shows higher activity in strains isolated from cases of preterm birth than those isolates from rectovaginal swabs of healthy women. We discovered that GBS rely on HylB to avoid immune detection in uterine tissue, but not placental tissue, which leads to increased rates of fetal injury and preterm birth. These studies provide novel insight into the underlying mechanisms of ascending infection.


Science immunology | 2016

Group B Streptococcus circumvents neutrophils and neutrophil extracellular traps during amniotic cavity invasion and preterm labor

Erica Boldenow; Claire Gendrin; Lisa Ngo; Craig J. Bierle; Jay Vornhagen; Michelle Coleman; Sean Merillat; Blair Armistead; Christopher Whidbey; Varchita Alishetti; Veronica Santana-Ufret; Jason Ogle; Michael Gough; Sengkeo L. Srinouanprachanh; James W. MacDonald; Theo K. Bammler; Aasthaa Bansal; H. Denny Liggitt; Lakshmi Rajagopal; Kristina M. Adams Waldorf

Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are β-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor.Group B streptococci overcome neutrophils in placental membranes, inducing fetal injury and preterm labor. NETting group B strep Group B Streptococcus (GBS) infection in pregnant women can lead to preterm birth and fetal injury. Boldenow et al. report that a hemolytic pigment toxin from GBS contributes to these effects by subverting neutrophils and neutrophil extracellular traps (NETs) in placental membranes. They found in a nonhuman primate model that adverse outcomes were more closely associated with hemolytic than with nonhemolytic GBS, and that GBS hemolytic pigment toxin induced cell death in neutrophils and prevented killing by NETs, allowing GBS to invade the amniotic fluid. This toxin therefore could serve as a target to prevent complications from GBS in pregnant women. Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with most early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B streptococci (GBS) are β-hemolytic, Gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we used a chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC, and immune responses during pregnancy-associated infections. We show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared with nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared with maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor.


Science Advances | 2015

Mast cell degranulation by a hemolytic lipid toxin decreases GBS colonization and infection

Claire Gendrin; Jay Vornhagen; Lisa Ngo; Christopher Whidbey; Erica Boldenow; Veronica Santana-Ufret; Morgan Clauson; Kellie Burnside; Dionne P. Galloway; Kristina M. Adams Waldorf; Adrian M. Piliponsky; Lakshmi Rajagopal

GBS hemolytic lipid/pigment and hyperpigmented GBS activate mast cells triggering the release of preformed and proinflammatory mediators. Ascending infection of microbes from the lower genital tract into the amniotic cavity increases the risk of preterm birth, stillbirth, and newborn infections. Host defenses that are critical for preventing ascending microbial infection are not completely understood. Group B Streptococcus (GBS) are Gram-positive bacteria that frequently colonize the lower genital tract of healthy women but cause severe infections during pregnancy, leading to preterm birth, stillbirth, or early-onset newborn infections. We recently described that the GBS pigment is hemolytic, and increased pigment expression promotes GBS penetration of human placenta. Here, we show that the GBS hemolytic pigment/lipid toxin and hyperpigmented GBS strains induce mast cell degranulation, leading to the release of preformed and proinflammatory mediators. Mast cell–deficient mice exhibit enhanced bacterial burden, decreased neutrophil mobilization, and decreased immune responses during systemic GBS infection. In a vaginal colonization model, hyperpigmented GBS strains showed increased persistence in mast cell–deficient mice compared to mast cell–proficient mice. Consistent with these observations, fewer rectovaginal GBS isolates from women in their third trimester of pregnancy were hyperpigmented/hyperhemolytic. Our work represents the first example of a bacterial hemolytic lipid that induces mast cell degranulation and emphasizes the role of mast cells in limiting genital colonization by hyperpigmented GBS.


Pathogenetics | 2015

Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics

Jay Vornhagen; Kellie Burnside; Christopher Whidbey; Jessica Berry; Xuan Qin; Lakshmi Rajagopal

Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections.


Journal of Clinical Investigation | 2018

Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection

Jay Vornhagen; Blair Armistead; Veronica Santana-Ufret; Claire Gendrin; Sean Merillat; Michelle Coleman; Phoenicia Quach; Erica Boldenow; Varchita Alishetti; Christina Leonhard-Melief; Lisa Y. Ngo; Christopher Whidbey; Kelly S. Doran; Chad Curtis; Kristina M. Adams Waldorf; Elizabeth Nance; Lakshmi Rajagopal

Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and &bgr;-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.


Infection and Immunity | 2015

The Sensor Histidine Kinase RgfC Affects Group B Streptococcal Virulence Factor Expression Independent of Its Response Regulator RgfA

Claire Gendrin; Annalisa Lembo; Christopher Whidbey; Kellie Burnside; Jessica Berry; Lisa Ngo; Anirban Banerjee; Liang Xue; Justine V. Arrington; Kelly S. Doran; W. Andy Tao; Lakshmi Rajagopal

ABSTRACT Group B streptococci (GBS; Streptococcus agalactiae) are beta-hemolytic, Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, these opportunistic bacteria also cause invasive infections in human newborns and in certain adult populations. To adapt to the various environments encountered during its disease cycle, GBS encodes a number of two-component signaling systems. Previous studies have indicated that the TCS comprising the sensor histidine kinase RgfC and the response regulator RgfA mediate GBS binding to extracellular matrix components, such as fibrinogen. However, in certain GBS clinical isolates, a point mutation in rgfA results in premature truncation of the response regulator. The truncated RgfA protein lacks the C-terminal DNA binding domain necessary for promoter binding and gene regulation. Here, we show that deletion of rgfC in GBS strains lacking a functional RgfA increased systemic infection. Furthermore, infection with the rgfC mutant increased induction of proinflammatory signaling pathways in vivo. Phosphoproteomic analysis revealed that 19 phosphopeptides corresponding to 12 proteins were differentially phosphorylated at aspartate, cysteine, serine, threonine, or tyrosine residues in the rgfC mutant. This included aspartate phosphorylation of a tyrosine kinase, CpsD, and a transcriptional regulator. Consistent with this observation, microarray analysis of the rgfC mutant indicated that >200 genes showed altered expression compared to the isogenic wild-type strain and included transcriptional regulators, transporters, and genes previously associated with GBS pathogenesis. Our observations suggest that in the absence of RgfA, nonspecific RgfC signaling affects the expression of virulence factors and GBS pathogenesis.


Journal of Infectious Diseases and Medicine | 2017

Exploring the Pregnant Guinea Pig as a Model for Group B Streptococcus Intrauterine Infection

Maria Isabel Harrell; Kellie Burnside; Christopher Whidbey; Jay Vornhagen; Kristina M. Adams Waldorf; Lakshmi Rajagopal

Infection of the amniotic cavity remains a major cause of preterm birth, stillbirth, fetal injury and early onset, fulminant infections in newborns. Currently, there are no effective therapies to prevent in utero infection and consequent co-morbidities. This is in part due to the lack of feasible and appropriate animal models to understand mechanisms that lead to in utero infections. Use of mouse and rat models do not fully recapitulate human pregnancy, while pregnant nonhuman primate models are limited by ethical considerations, technical constraints, and cost. Given these limitations, the guinea pig is an attractive animal model for studying pregnancy infections, particularly as the placental structure is quite similar to the human placenta. Here, we describe our studies that explored the pregnant guinea pig as a model to study in utero Group B Streptococci (GBS) infections. We observed that intrauterine inoculation of wild type GBS in pregnant guinea pigs resulted in bacterial invasion and dissemination to the placenta, amniotic fluid and fetal organs. Also, hyperhemolytic GBS such as those lacking the hemolysin repressor CovR/S showed increased dissemination into the amniotic fluid and fetal organs such as the fetal lung and brain. These results are similar to those observed in mouse and non-human primate models of in utero infection, and support use of the guinea pig as a model for studying GBS infections in pregnancy.


The Journal of Infectious Diseases | 2018

A Nonhemolytic Group B Streptococcus Strain Exhibits Hypervirulence

Claire Gendrin; Jay Vornhagen; Blair Armistead; Pallavi Singh; Christopher Whidbey; Sean Merillat; David Knupp; Robert E. Parker; Lisa M. Rogers; Phoenicia Quach; Lakshminarayan M. Iyer; L. Aravind; Shannon D. Manning; David M. Aronoff; Lakshmi Rajagopal

Group B streptococci (GBS) are Gram-positive bacteria that are a leading cause of neonatal infections. Most invasive isolates are β-hemolytic, and hemolytic activity is critical for GBS virulence. Although nonhemolytic GBS strains are occasionally isolated, they are often thought to be virulence attenuated. In this study, we show that a nonhemolytic GBS strain (GB37) isolated from a septic neonate exhibits hypervirulence. Substitution of tryptophan to leucine (W297L) in the sensor histidine kinase CovS results in constitutive kinase signaling, leading to decreased hemolysis and increased activity of the GBS hyaluronidase, HylB. These results describe how nonpigmented and nonhemolytic GBS strains can exhibit hypervirulence.


Clinical research in infectious diseases | 2015

A Hyperhemolytic/Hyperpigmented Group B Streptococcus Strain with a CovR Mutation Isolated from an Adolescent Patient with Sore Throat

Christopher Whidbey; Kellie Burnside; Raquel M. Martinez; Claire Gendrin; Jay Vornhagen; Andrew Frando; Maria Isabel Harrell; Ryan M. McAdams; Lakshmi Rajagopal

Collaboration


Dive into the Christopher Whidbey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Vornhagen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Claire Gendrin

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Boldenow

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lisa Ngo

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sean Merillat

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Blair Armistead

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge