Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher X. F. Lam is active.

Publication


Featured researches published by Christopher X. F. Lam.


Materials Science and Engineering: C | 2002

Scaffold development using 3D printing with a starch-based polymer

Christopher X. F. Lam; X.M. Mo; Swee Hin Teoh; Dietmar W. Hutmacher

Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests.


Journal of Biomedical Materials Research Part A | 2009

Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo

Christopher X. F. Lam; Dietmar W. Hutmacher; Jan-Thorsten Schantz; Maria A. Woodruff; Swee Hin Teoh

The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration.


Biomedical Materials | 2008

Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions

Christopher X. F. Lam; Monica Savalani; Swee Hin Teoh; Dietmar W. Hutmacher

The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.


Tissue Engineering | 2003

Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.

Jan-Thorsten Schantz; Dietmar W. Hutmacher; Christopher X. F. Lam; Maik Brinkmann; Kit Mui Wong; Thiam Chye Lim; Ning Chou; Robert E. Guldberg; Swee Hin Teoh

We have demonstrated in Part I of this study [see Schantz, J.-T., et al., Tissue Eng. 2003;9(Suppl. 1): S-113-S-126; this issue] that bone marrow-derived progenitor cells and calvarial osteoblasts could be successfully directed into the osteogenic lineage and cultured in three-dimensional (3-D) polycaprolactone (PCL) scaffolds. The objective of the second part of the study was to evaluate and to compare tissue engineered cell-polymer constructs using calvarial osteoblasts (group I) and mesenchymal progenitor cells (MPCs; group II) for the reconstruction of critical-size and three-dimensionally complex cranial defects. In 30 New Zealand White rabbits, bilateral parietal critical-size defects were created. On the basis of computed tomography scans, customized PCL scaffolds with precisely controlled microarchitecture were fabricated, using a rapid prototyping technology. Bone marrow-derived progenitor cells and osteoblasts were isolated and expanded in culture. Osteoblasts (group I) and mesenchymal progenitor cells (group II) were seeded in combination with a fibrin glue suspension into 40 PCL scaffolds. After incubating for 3 days in static culture, the PCL scaffold-cell constructs as well as nonseeded PCL scaffolds (control group) were implanted into 15-mm-diameter calvarial defects. Reconstruction of the cranium and bone formation were evaluated after 3 months. In vivo results indicated osseous tissue integration within the implant and functionally stable restoration of the calvarium. Islands of early bone formation could be observed in X-ray radiographs and in histological sections. Implants showed a high cell:ECM ratio and a dense vascular network. Mechanical testing of the reconstructed area revealed partial integration with the surrounding corticocancellous calvarial bone. The amount (area) of calcification, measured by clinical computed tomography, indicated that cell-seeded constructs measured about 60% more than unrepaired or unseeded scaffolds. Mechanical investigations revealed that stiffness reached 52 +/- 29 and 44 +/- 16 MPa for MPC- and osteoblast-seeded scaffolds, respectively. The yield strength for the push-out tests was 180 +/- 36 N for normal calvarial bone, 90 +/- 1 N for unrepaired site, and 106 +/- 10 N for unseeded constructs, which is about 60% of normal bone strength. MPC- and osteoblast-seeded scaffolds indicated a yield strength of 149 +/- 15 and 164 +/- 42 N, respectively, which is about 85-90% of normal bone. This study demonstrated that customized biodegradable polymeric implants may be used to deliver osteogenic cells and enhance bone formation within critically-sized defects in vivo. The use of rapid prototyping technology to produce scaffolds with controlled external geometry and microarchitecture offers new possibilities in the functional and aesthetic reconstruction of complex craniofacial defects.


Tissue Engineering | 2003

Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.

Jan-Thorsten Schantz; Swee Hin Teoh; Thiam Chye Lim; Michaela Endres; Christopher X. F. Lam; Dietmar W. Hutmacher

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.


Acta Biomaterialia | 2011

Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering

M. Tarik Arafat; Christopher X. F. Lam; Andrew K. Ekaputra; Siew Yee Wong; Xu Li; Ian Gibson

The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering.


Spine | 2011

Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow-derived multipotent stromal cells in biodegradable scaffolds: a comparative study in a large animal model of anterior lumbar interbody fusion.

Sunny Akogwu Abbah; Christopher X. F. Lam; Amit K. Ramruttun; James Cho Hong Goh; Hee-Kit Wong

Study Design. A large animal study comparing interbody fusion of a bioresorbable scaffold loaded with either low-dose recombinant human bone morphogenetic protein 2 (rhBMP-2) or bone marrow-derived multipotent stromal cells (BMSCs). Objective. To compare the quality of fusion resulting from implantation of medical grade poly (&epsis;-caprolactone)-20% tricalcium phosphate (mPCL/TCP) scaffolds and two different bone growth stimulating agents. Summary of Background Data. Nondegradable cages have been used for interbody fusion with good results. However, the overall advantage of lifelong implantation of a nondegradable device remains a subject of ongoing debate. The use of bioresorbable scaffolds might offer superior alternatives. In this study, we evaluated the quality of fusion obtained with two potential bone graft substitutes. Methods. Eleven Yorkshire pigs underwent a bisegmental (L2/L3; L4/L5) anterior lumbar interbody fusion (ALIF) in four groups, namely: (1) mPCL/TCP + 0.6mg rhBMP-2; (2) mPCL/TCP + BMSCs; (3) mPCL/TCP (negative control); and (4) autologous bone grafts (positive control). Results. The mean radiographic scores at 9 months were 3.0, 1.7, 1.0, and 1.8 for groups 1 to 4, respectively. The bone volume fraction of group 1 was two-folds higher than group 2. Histology, micro-computed tomographic scanning and biomechanical evaluation demonstrated solid and comparable fusion between groups 1 and 4. However, group 2 showed inferior quality of fusion when compared with groups 1 and 4 while group 3 showed no fusion even at 9 months. In addition, there was no evidence of implant rejection, chronic inflammation or any other complications. Conclusion. mPCL/TCP scaffolds loaded with low-dose rhBMP-2 is comparable to autograft bone as a bone graft substitute in this large animal ALIF model. Although BMSCs lagged behind autograft bone and rhBMP-2, evidence of bone ingrowth in this group warrants further investigation. Our results suggest that mPCL/TCP scaffolds loaded with rhBMP-2 or BMSCs may be a viable alternative to conventional cages and autograft bone.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Differentiation potential of mesenchymal progenitor cells following transplantation into calvarial defects

Jan-Thorsten Schantz; Maria A. Woodruff; Christopher X. F. Lam; Thiam Chye Lim; Hans Günther Machens; Swee Hin Teoh; Dietmar W. Hutmacher

The complexity of stem cell lineage commitment requires studies to investigate the intrinsic and extrinsic regulatory events during differentiation. The objective of this long-term in vivo study was to investigate cellular differentiation and tissue formation of transplanted undifferentiated bone-marrow-derived mesenchymal progenitor cells (BMPCs) in combination with a medical grade polycaprolactone (mPCL) scaffold and to compare them to osteoblasts; a more differentiated cell type in a calvarial defect model. Tissue formation was assessed via histology, mechanical and radiological methods after 3 12, and 24 months. After 3 months our results indicated that transplanted mesenchymal progenitor cells were influenced by the niche of the host environment. Scaffold/BMPCs formed islands of bone tissue inside the defect area. However when the surrounding host calvarium contained a high content of fatty tissue, the fat content in the defect areas was also significantly higher. In contrast, defects repaired with scaffold/cOBs did not show this phenomenon. Analysis after 12 and 24 months confirmed these observations indicating that a predominantly fatty environment leads to adipogenic development in the progenitor group. Biomechanical data revealed that the tissue was less firm in the BMPC group compared to the cOB seeded group. Evaluation of cell plasticity in vivo has important consequences in clinical cell transplantation protocols. This study indicates that cell fate decisions are partially regulated by extrinsic control mechanisms of the immediate environment suggesting that induction of BMPCs into a specific lineage could be beneficial prior transplantation.


biomedical engineering international conference | 2009

Composite PLDLLA/TCP Scaffolds for Bone Engineering: Mechanical and In Vitro Evaluations

Christopher X. F. Lam; Radoslow Olkowski; Wojciech Swieszkowski; Kim Cheng Tan; Ian Gibson; Dietmar W. Hutmacher

Bone tissue engineering scaffolds have two challenging functional tasks to play; to be bioactive by encouraging cell proliferation and differentiation, and to provide suitable mechanical stability upon implantation. Composites of biopolymers and bioceramics unite the advantages of both materials resulting in better processibility, enhanced mechanical properties through matrix reinforcement and osteoinductivity. Novel composite blends of poly(L-lactide-co-D,L-lactide)/tricalcium phosphate (PLDLLA/TCP) were fabricated into scaffolds by an extrusion deposition technique customised from standard rapid prototyping technology. PLDLLA/TCP composite material blends of various compositions were prepared and analysed for their mechanical properties. PLDLLA/TCP (10%) was optimised and fabricated into scaffolds. Compressive mechanical properties for the composite scaffolds were performed. In vitro studies were conducted using porcine bone-marrow stromal cells (BMSCs). Cell-scaffold constructs were induced using osteogenic induction factors for up to 8 weeks. Cell proliferation, viability and differentiation capabilities were assayed using phase contrast light microscopy, scanning electron microscopy, PicoGreen DNA quantification, AlamarBlue metabolic assay; FDA/PI fluorescent assay and western blot analysis for osteopontin. Microscopy observations showed BMSCs possessed high proliferative capabilities and demonstrated bridging across the pores of the scaffolds. FDA/PI staining as well as AlamarBlue assay showed high viability of BMSCs cultured on the composite scaffolds Cell numbers, based on DNA quantitation, was observed to increase continuously up to the 8th week of study. Western blot analysis showed increased osteopontin synthesis on the scaffolds compared to tissue culture plastic. Based on our results the PLDLLA/TCP scaffolds exhibit good potential and biocompatibility for bone tissue engineering applications.


Tissue Engineering Part A | 2008

Biocompatibility, osteo-compatibility and mechanical evaluations of novel PLDLLA/TcP scaffolds

R. Olkowski; Christopher X. F. Lam; Wojciech Swieszkowski; K. C. Tan; M. M. Savalani; I. Gibson; Małgorzata Lewandowska-Szumieł; Dietmar W. Hutmacher

For tissue engineering of small-diameter blood vessels, biodegradable, flexible and elastic porous tubular structures are most suited. In this study, we prepared crosslinked porous tubular structures from poly(trimethylene carbonate) (PTMC), in which smooth muscle cells (SMCs) were seeded and cultured in a pulsatile bioreactor mimicking the physiological conditions. PTMC was synthesized and porous tubular structures were prepared by dipping coating, cross-linking by g-irradiation, and leaching. SMCs were seeded into the porous structures by perfusion and then the constructs were cultured in a pulsatile bioreactor system. The morphologies, mechnical properties were analyzed and SMCs attachment and proliferation were evaluated by histology studies and CyQuant. Flexible tubular structures were obtained by dip coating with 3mm inner diameter and 1mm wall thickness. The porosity of the structures in wet state reached 85 vol% and the pore sizes were 60-150 mm. PTMC tubular structures showed comparable tensile strength and higher elongation compared with natural blood vessels. A pulsatile bioreactor system mimicking the conditions in vivo (dynamic pressure 70 mmHg, 75 beats/min) was successfully built. Experiements showed 7-day dilation was <10% and variation of diameter at each pulse was <1%. SMCs were homogeneously seeded in the porous scaffolds by perfusion. SMCs proliferate well to form confluent cell layer during a time period of up to 14 days, leading to constructs with even better mechanical performance. PTMC Porous tubular structures were prepared with good microstructures, elasticity and biocompatibility. SMCs were seeded and proliferated well in pulsatile bioreactor system and significant improvement of mechnical strength was observed.

Collaboration


Dive into the Christopher X. F. Lam's collaboration.

Top Co-Authors

Avatar

Dietmar W. Hutmacher

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Swee Hin Teoh

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew K. Ekaputra

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

James Cho Hong Goh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thiam Chye Lim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Radoslow Olkowski

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Maria A. Woodruff

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge