Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christos D. Malliakas is active.

Publication


Featured researches published by Christos D. Malliakas.


Nature Chemistry | 2010

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities

Omar K. Farha; A. Ozgur Yazaydin; Ibrahim Eryazici; Christos D. Malliakas; Brad G. Hauser; Mercouri G. Kanatzidis; SonBinh T. Nguyen; Randall Q. Snurr; Joseph T. Hupp

Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.


Journal of the American Chemical Society | 2010

Control over Catenation in Metal−Organic Frameworks via Rational Design of the Organic Building Block

Omar K. Farha; Christos D. Malliakas; Mercouri G. Kanatzidis; Joseph T. Hupp

Metal-organic frameworks (MOFs), a hybrid class of materials comprising inorganic nodes and organic struts, have potential application in many areas due to their high surface areas and uniform pores and channels. One of the key challenges to be overcome in MOF synthesis is the strong propensity for catenation (growth of multiple independent networks within a given crystal), as catenation reduces cavity sizes and diminishes porosity. Here we demonstrate that rational design of organic building blocks, which act as strut-impervious scaffolds, can be exploited to generate highly desired noncatenated materials in a controlled fashion.


Journal of the American Chemical Society | 2012

CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions

In Chung; Jung Hwan Song; Jino Im; John Androulakis; Christos D. Malliakas; Hao Li; Arthur J. Freeman; John T. Kenney; Mercouri G. Kanatzidis

CsSnI(3) is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI(3) have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI(3), coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI(3). The black orthorhombic form of CsSnI(3) demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI(3) indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of ∼ 10(17) cm(-3) and a hole mobility of ∼585 cm(2) V(-1) s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise intrinsically. Thus, although stoichiometric CsSnI(3) is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.


Nature Materials | 2016

Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction.

Jakub Staszak-Jirkovský; Christos D. Malliakas; Pietro Papa Lopes; Nemanja Danilovic; Subrahmanyam S. Kota; Kee Chul Chang; Bostjan Genorio; Dusan Strmcnik; Vojislav R. Stamenkovic; Mercouri G. Kanatzidis; Nenad M. Markovic

Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS2 and MoS2) and amorphous (CoSx and MoSx) hydrogen evolution catalysts. We propose that Co(2+) and Mo(4+) centres promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoSx materials are more active than MoSx they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. By combining the higher activity of CoSx building blocks with the higher stability of MoSx units into a compact and robust CoMoSx chalcogel structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.


Nature | 2008

Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering

A. D. Christianson; E. A. Goremychkin; Raymond Osborn; S. Rosenkranz; M. D. Lumsden; Christos D. Malliakas; I. S. Todorov; H. Claus; Duck Young Chung; Mercouri G. Kanatzidis; R. I. Bewley; T. Guidi

A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (Tc), some of which are >50 K, and because of similarities with the high-Tc copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below Tc in Ba0.6K0.4Fe2As2, a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.


Chemistry: A European Journal | 2010

An Interpenetrated Framework Material with Hysteretic CO2 Uptake

Karen L. Mulfort; Omar K. Farha; Christos D. Malliakas; Mercouri G. Kanatzidis; Joseph T. Hupp

A new, twofold interpenetrated metal-organic framework (MOF) material has been synthesized that demonstrates dramatic steps in the adsorption and hysteresis in the desorption of CO(2). Measurement of the structure by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analysis indicates that structural changes upon CO(2) sorption most likely involve the interpenetrated frameworks moving with respect to each other.


APL Materials | 2014

Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a)

Duyen H. Cao; Constantinos C. Stoumpos; Christos D. Malliakas; Michael J. Katz; Omar K. Farha; Joseph T. Hupp; Mercouri G. Kanatzidis

Perovskite-containing solar cells were fabricated in a two-step procedure in which PbI2 is deposited via spin-coating and subsequently converted to the CH3NH3PbI3 perovskite by dipping in a solution of CH3NH3I. By varying the dipping time from 5 s to 2 h, we observe that the device performance shows an unexpectedly remarkable trend. At dipping times below 15 min the current density and voltage of the device are enhanced from 10.1 mA/cm2 and 933 mV (5 s) to 15.1 mA/cm2 and 1036 mV (15 min). However, upon further conversion, the current density decreases to 9.7 mA/cm2 and 846 mV after 2 h. Based on X-ray diffraction data, we determined that remnant PbI2 is always present in these devices. Work function and dark current measurements showed that the remnant PbI2 has a beneficial effect and acts as a blocking layer between the TiO2 semiconductor and the perovskite itself reducing the probability of back electron transfer (charge recombination). Furthermore, we find that increased dipping time leads to an increase in the size of perovskite crystals at the perovskite-hole-transporting material interface. Overall, approximately 15 min dipping time (∼2% unconverted PbI2) is necessary for achieving optimal device efficiency.


Journal of the American Chemical Society | 2014

Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs2SnI6 as a Hole Conductor

Byunghong Lee; Constantinos C. Stoumpos; Nanjia Zhou; Feng Hao; Christos D. Malliakas; Chen Yu Yeh; Tobin J. Marks; Mercouri G. Kanatzidis; R. P. H. Chang

We introduce a new class of molecular iodosalt compounds for application in next-generation solar cells. Unlike tin-based perovskite compounds CsSnI3 and CH3NH3SnI3, which have Sn in the 2+ oxidation state and must be handled in an inert atmosphere when fabricating solar cells, the Sn in the molecular iodosalt compounds is in the 4+ oxidation state, making them stable in air and moisture. As an example, we demonstrate that, using Cs2SnI6 as a hole transporter, we can successfully fabricate in air a solid-state dye-sensitized solar cell (DSSC) with a mesoporous TiO2 film. Doping Cs2SnI6 with additives helps to reduce the internal device resistance, improving cell efficiency. In this way, a Z907 DSSC delivers 4.7% of energy conversion efficiency. By using a more efficient mixture of porphyrin dyes, an efficiency near 8% with photon confinement has been achieved. This represents a significant step toward the realization of low-cost, stable, lead-free, and environmentally benign next-generation solid-state solar cells.


Journal of the American Chemical Society | 2010

Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study.

Tarun K. Bera; Joon I. Jang; Jung-Hwan Song; Christos D. Malliakas; Arthur J. Freeman; J. B. Ketterson; Mercouri G. Kanatzidis

AAsSe(2) (A = Li, Na) have been identified as a new class of polar direct-band gap semiconductors. These I-V-VI(2) ternary alkali-metal chalcoarsenates have infinite single chains of (1/infinity)[AsQ(2)(-)] derived from corner-sharing pyramidal AsQ(3) units with stereochemically active lone pairs of electrons on arsenic. The conformations and packing of the chains depend on the structure-directing alkali metals. This results in at least four different structural types for the Li(1-x)Na(x)AsSe(2) stoichiometry (alpha-LiAsSe(2), beta-LiAsSe(2), gamma-NaAsSe(2), and delta-NaAsSe(2)). Single-crystal X-ray diffraction studies showed an average cubic NaCl-type structure for alpha-LiAsSe(2), which was further demonstrated to be locally distorted by pair distribution function (PDF) analysis. The beta and gamma forms have polar structures built of different (1/infinity)[AsSe(2)(-)] chain conformations, whereas the delta form has nonpolar packing. A wide range of direct band gaps are observed, depending on composition: namely, 1.11 eV for alpha-LiAsSe(2), 1.60 eV for LiAsS(2), 1.75 eV for gamma-NaAsSe(2), 2.23 eV for NaAsS(2). The AAsQ(2) materials are soluble in common solvents such as methanol, which makes them promising candidates for solution processing. Band structure calculations performed with the highly precise screened-exchange sX-LDA FLAPW method confirm the direct-gap nature and agree well with experiment. The polar gamma-NaAsSe(2) shows very large nonlinear optical (NLO) second harmonic generation (SHG) response in the wavelength range of 600-950 nm. The theoretical studies confirm the experimental results and show that gamma-NaAsSe(2) has the highest static SHG coefficient known to date, 337.9 pm/V, among materials with band gaps larger than 1.0 eV.


Science | 2010

Entropically Stabilized Local Dipole Formation in Lead Chalcogenides

Emil S. Božin; Christos D. Malliakas; Petros Souvatzis; Thomas Proffen; Nicola A. Spaldin; Mercouri G. Kanatzidis; Simon J. L. Billinge

A Hot Dipole In a ferroelectric material, there is an alignment of local electric dipole moments that produces a net overall electric polarization. This state is accompanied by a decrease in symmetry, which can be restored by heating above a critical temperature. In contrast, through a combination of theory and experiments, Božin et al. (p. 1660) now show that with increasing temperature, rock-salt–structured lead telluride and lead sulfide go through a phase transition from a high symmetry phase to a low symmetry phase with an associated dipole moment. Paradoxically, the dipoles are stabilized in the disordered state at high temperature, even though the undistorted structure has lower internal energy. Upon heating, lead telluride and lead sulfide show the formation of a less symmetric, dipolar structure. We report the observation of local structural dipoles that emerge from an undistorted ground state on warming, in contrast to conventional structural phase transitions in which distortions emerge on cooling. Using experimental and theoretical probes of the local structure, we demonstrate this behavior in binary lead chalcogenides, which were believed to adopt the ideal, undistorted rock-salt structure at all temperatures. The behavior is consistent with a simple thermodynamic model in which the emerging dipoles are stabilized in the disordered state at high temperature due to the extra configurational entropy despite the fact that the undistorted structure has lower internal energy. Our findings shed light on the anomalous electronic and thermoelectric properties of the lead chalcogenides. Similar searches may show that the phenomenon is more widespread.

Collaboration


Dive into the Christos D. Malliakas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duck Young Chung

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adel Mesbah

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhifu Liu

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge