Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christos Fryganas is active.

Publication


Featured researches published by Christos Fryganas.


PLOS ONE | 2014

Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum

Andrew R. Williams; Christos Fryganas; Aina Ramsay; Irene Mueller-Harvey; Stig M. Thamsborg

Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.


Journal of Agricultural and Food Chemistry | 2014

Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS.

Marica T. Engström; Maija Pälijärvi; Christos Fryganas; John H. Grabber; Irene Mueller-Harvey; Juha-Pekka Salminen

This paper presents the development of a rapid method with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analyses of plant proanthocyanidins directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymerization step in the ion source of both smaller oligomers and larger polymers. The formed depolymerization products are further fragmented in the collision cell to enable their selective detection. This UPLC-MS/MS method is able to separately quantitate the terminal and extension units of the most common proanthocyanidin subclasses, that is, procyanidins and prodelphinidins. The resulting data enable (1) quantitation of the total proanthocyanidin content, (2) quantitation of total procyanidins and prodelphinidins including the procyanidin/prodelphinidin ratio, (3) estimation of the mean degree of polymerization for the oligomers and polymers, and (4) estimation of how the different procyanidin and prodelphinidin types are distributed along the chromatographic hump typically produced by large proanthocyanidins. All of this is achieved within the 10 min period of analysis, which makes the presented method a significant addition to the chemistry tools currently available for the qualitative and quantitative analyses of complex proanthocyanidin mixtures from plant extracts.


Journal of Agricultural and Food Chemistry | 2015

Anthelmintic Activities against Haemonchus contortus or Trichostrongylus colubriformis from Small Ruminants Are Influenced by Structural Features of Condensed Tannins

Jessica Quijada; Christos Fryganas; Honorata M. Ropiak; Aina Ramsay; Irene Mueller-Harvey; H. Hoste

Plants containing condensed tannins (CTs) may hold promise as alternatives to synthetic anthelmintic (AH) drugs for controlling gastrointestinal nematodes (GINs). However, the structural features that contribute to the AH activities of CTs remain elusive. This study probed the relationships between CT structures and their AH activities. Eighteen plant resources were selected on the basis of their diverse CT structures. From each plant resource, two CT fractions were isolated and their in vitro AH activities were measured with the larval exsheathment inhibition assay, which was applied to Haemonchus contortus and Trichostrongylus colubriformis. Calculation of mean EC50 values indicated that H. contortus was more susceptible than T. colubriformis to the different fractions and that the F1 fractions were less efficient than the F2 ones, as indicated by the respective mean values for H. contortus, F1 = 136.9 ± 74.1 μg/mL and F2 = 108.1 ± 53.2 μg/mL, and for T. colubriformis, F1 = 233 ± 54.3 μg/mL and F2 = 166 ± 39.9 μg/mL. The results showed that the AH activity against H. contortus was associated with the monomeric subunits that give rise to prodelphinidins (P < 0.05) and with CT polymer size (P < 0.10). However, for T. colubriformis AH activity was correlated only with prodelphinidins (P < 0.05). These results suggest that CTs have different modes of action against different parasite species.


Parasites & Vectors | 2014

Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesophagostomum dentatum.

Andrew R. Williams; Honorata M. Ropiak; Christos Fryganas; Olivier Desrues; Irene Mueller-Harvey; Stig M. Thamsborg

BackgroundPlant-derived condensed tannins (CT) show promise as a complementary option to treat gastrointestinal helminth infections, thus reducing reliance on synthetic anthelmintic drugs. Most studies on the anthelmintic effects of CT have been conducted on parasites of ruminant livestock. Oesophagostomum dentatum is an economically important parasite of pigs, as well as serving as a useful laboratory model of helminth parasites due to the ability to culture it in vitro for long periods through several life-cycle stages. Here, we investigated the anthelmintic effects of CT on multiple life cycle stages of O. dentatum.MethodsExtracts and purified fractions were prepared from five plants containing CT and analysed by HPLC-MS. Anthelmintic activity was assessed at five different stages of the O. dentatum life cycle; the development of eggs to infective third-stage larvae (L3), the parasitic L3 stage, the moult from L3 to fourth-stage larvae (L4), the L4 stage and the adult stage.ResultsFree-living larvae of O. dentatum were highly susceptible to all five plant extracts. In contrast, only two of the five extracts had activity against L3, as evidenced by migration inhibition assays, whilst three of the five extracts inhibited the moulting of L3 to L4. All five extracts reduced the motility of L4, and the motility of adult worms exposed to a CT-rich extract derived from hazelnut skins was strongly inhibited, with electron microscopy demonstrating direct damage to the worm cuticle and hypodermis. Purified CT fractions retained anthelmintic activity, and depletion of CT from extracts by pre-incubation in polyvinylpolypyrrolidone removed anthelmintic effects, strongly suggesting CT as the active molecules.ConclusionsThese results suggest that CT may have promise as an alternative parasite control option for O. dentatum in pigs, particularly against adult stages. Moreover, our results demonstrate a varied susceptibility of different life-cycle stages of the same parasite to CT, which may offer an insight into the anthelmintic mechanisms of these commonly found plant compounds.


Journal of Agricultural and Food Chemistry | 2015

Large Variability of Proanthocyanidin Content and Composition in Sainfoin (Onobrychis viciifolia).

Carsten Malisch; Andreas Lüscher; Nicolas Baert; Marica T. Engström; Bruno Studer; Christos Fryganas; Daniel Suter; Irene Mueller-Harvey; Juha-Pekka Salminen

Proanthocyanidins (PAs) in sainfoin (Onobrychis viciifolia Scop.) are of interest to ameliorate the sustainability of livestock production. However, sainfoin forage yield and PA concentrations, as well as their composition, require optimization. Individual plants of 27 sainfoin accessions from four continents were analyzed with LC-ESI-QqQ-MS/MS for PA concentrations and simple phenolic compounds. Large variability existed in PA concentrations (23.0–47.5 mg g–1 leaf dry matter (DM)), share of prodelphinidins (79–96%), and mean degree of polymerization (11–14) among, but also within, accessions. PAs were mainly located in leaves (26.8 mg g–1 DM), whereas stems had less PAs (7.8 mg g–1 DM). Overall, high-yielding plants had lower PA leaf concentrations (R2 = 0.16, P < 0.001) and fewer leaves (R2 = 0.66, P < 0.001). However, the results show that these two trade-offs between yield and bioactive PAs can be overcome.


Parasitology | 2016

Impact of chemical structure of flavanol monomers and condensed tannins on in vitro anthelmintic activity against bovine nematodes

Olivier Desrues; Christos Fryganas; Honorata M. Ropiak; Irene Mueller-Harvey; Heidi L. Enemark; Stig M. Thamsborg

SUMMARY Plants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT determine the anti-parasitic effects against the main cattle nematodes. We used in vitro tests targeting L1 larvae (feeding inhibition assay) and adults (motility assay) of Ostertagia ostertagi and Cooperia oncophora. In the larval feeding inhibition assay, O. ostertagi L1 were significantly more susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite activity than the stereochemistry, i.e. cis- vs trans-configurations, or the presence of a gallate group. In contrast, for C. oncophora high reductions in the motility of larvae and adult worms were strongly related with a higher percentage of PDs within the CT fractions while there was no effect of size. Overall, the size and the percentage of PDs within CT seemed to be the most important parameters that influence anti-parasitic activity.


The Journal of Agricultural Science | 2016

Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics

Nguyen T. Huyen; Christos Fryganas; G. Uittenbogaard; Irene Mueller-Harvey; M.W.A. Verstegen; W.H. Hendriks; W.F. Pellikaan

An in vitro study was conducted to investigate the effects of condensed tannin (CT) structural properties, i.e. average polymer size (or mean degree of polymerization), percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane (CH 4 ) production and fermentation characteristics. Condensed tannins were extracted from eight plants in order to obtain different CT types: blackcurrant leaves, goat willow leaves, goat willow twigs, pine bark, redcurrant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by high performance liquid chromatography (HPLC) analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated GP system. During the incubation, 12 gas samples (10 µ l) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analysed for CH 4 . A modified Michaelis-Menten model was fitted to the CH 4 concentration patterns and model estimates were used to calculate total cumulative CH 4 production (GP CH4 ). Total cumulative GP and GP CH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GP CH4 , and CH 4 concentration compared with the −PEG treatment. All CT types reduced GP CH4 and CH 4 concentration. All CT increased the half time of GP and GP CH4 . Moreover, all CT decreased the maximum rate of fermentation for GP CH4 and rate of substrate degradation. The correlation between CT structure and GP CH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average polymer size and percentage of cis flavan-3-ols.


Veterinary Parasitology | 2015

Efficacy of condensed tannins against larval Hymenolepis diminuta (Cestoda) in vitro and in the intermediate host Tenebrio molitor (Coleoptera) in vivo.

Suraj Dhakal; Nicolai V. Meyling; Andrew R. Williams; Irene Mueller-Harvey; Christos Fryganas; Christian Moliin Outzen Kapel; Brian L. Fredensborg

Natural anti-parasitic compounds in plants such as condensed tannins (CT) have anthelmintic properties against a range of gastrointestinal nematodes, but for other helminths such effects are unexplored. The aim of this study was to assess the effects of CT from three different plant extracts in a model system employing the rat tapeworm, Hymenolepis diminuta, in its intermediate host, Tenebrio molitor. An in vitro study examined infectivity of H. diminuta cysticercoids (excystation success) isolated from infected beetles exposed to different concentrations of CT extracts from pine bark (PB) (Pinus sps), hazelnut pericarp (HN) (Corylus avellana) or white clover flowers (WC) (Trifolium repens), in comparison with the anthelmintic drug praziquantel (positive control). In the in vitro study, praziquantel and CT from all three plant extracts had dose-dependent inhibitory effects on cysticercoid excystation. The HN extract was most effective at inhibiting excystation, followed by PB and WC. An in vivo study was carried out on infected beetles (measured as cysticercoid establishment) fed different doses of PB, HN and praziquantel. There was a highly significant inhibitory effect of HN on cysticercoid development (p=0.0002). Overall, CT showed a promising anti-cestodal effect against the metacestode stage of H. diminuta.


Immunology | 2017

Co-operative suppression of inflammatory responses in human dendritic cells by plant proanthocyanidins and products from the parasitic nematode Trichuris suis

Andrew R. Williams; Elsenoor J. Klaver; Lisa C. Laan; Aina Ramsay; Christos Fryganas; Rolf Difborg; Helene Kringel; Jess D. Reed; Irene Mueller-Harvey; Søren Skov; Irma van Die; Stig M. Thamsborg

Interactions between dendritic cells (DCs) and environmental, dietary and pathogen antigens play a key role in immune homeostasis and regulation of inflammation. Dietary polyphenols such as proanthocyanidins (PAC) may reduce inflammation, and we therefore hypothesized that PAC may suppress lipopolysaccharide (LPS) ‐induced responses in human DCs and subsequent T helper type 1 (Th1) ‐type responses in naive T cells. Moreover, we proposed that, because DCs are likely to be exposed to multiple stimuli, the activity of PAC may synergise with other bioactive molecules that have anti‐inflammatory activity, e.g. soluble products from the helminth parasite Trichuris suis (TsSP). We show that PAC are endocytosed by monocyte‐derived DCs and selectively induce CD86 expression. Subsequently, PAC suppress the LPS‐induced secretion of interleukin‐6 (IL‐6) and IL‐12p70, while enhancing secretion of IL‐10. Incubation of DCs with PAC did not affect lymphocyte proliferation; however, subsequent interferon‐γ production was markedly suppressed, while IL‐4 production was unaffected. The activity of PAC was confined to oligomers (degree of polymerization ≥ 4). Co‐pulsing DCs with TsSP and PAC synergistically reduced secretion of tumour necrosis factor‐α, IL‐6 and IL‐12p70 while increasing IL‐10 secretion. Moreover, both TsSP and PAC alone induced Th2‐associated OX40L expression in DCs, and together synergized to up‐regulate OX40L. These data suggest that PAC induce an anti‐inflammatory phenotype in human DCs that selectively down‐regulates Th1 response in naive T cells, and that they also act cooperatively with TsSP. Our results indicate a novel interaction between dietary compounds and parasite products to influence immune function, and may suggest that combinations of PAC and TsSP can have therapeutic potential for inflammatory disorders.


Research in Veterinary Science | 2016

Polymerization-dependent activation of porcine γδ T-cells by proanthocyanidins

Andrew R. Williams; Christos Fryganas; Kirsten Reichwald; Søren Skov; Irene Mueller-Harvey; Stig M. Thamsborg

Plant-derived proanthocyanidins (PAC) have been promoted as a natural method of improving health and immune function in livestock. It has previously been shown that PAC are effective agonists for activating ruminant γδ T-cells in vitro, however effects on other livestock species are not yet clear. Moreover, the fine structural characteristics of the PAC which contribute to this stimulatory effect have not been elucidated. Here, we demonstrate activation of porcine γδ T-cells by PAC via up-regulation of CD25 (IL-2Rα) and show that 1) activation is dependent on degree of polymerization (DP), with PAC fractions containing polymers with mean DP >6 significantly more effective than fractions with mean DP <6, whilst flavan-3-ol monomers (the constituent monomeric units of PAC) did not induce CD25 expression and 2) both procyanidin and prodelphinidin-type PAC are effective agonists. Furthermore, we show that this effect of PAC is restricted to the γδ T-cell population within porcine peripheral mononuclear cells as significant CD25 up-regulation was not observed in non γδ T-cells, and no activation (via CD80/86 up-regulation) was evident in monocytes. Our results show that dietary PAC may contribute to enhancement of innate immunity in swine via activation of γδ T-cells.

Collaboration


Dive into the Christos Fryganas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Hoste

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge