Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christos Tsatsanis is active.

Publication


Featured researches published by Christos Tsatsanis.


Immunity | 2009

The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs.

Ariadne Androulidaki; Dimitrios Iliopoulos; Alicia Arranz; Christina Doxaki; Steffen Schworer; Vassiliki Zacharioudaki; Andrew N. Margioris; Philip N. Tsichlis; Christos Tsatsanis

MicroRNAs regulated by lipopolysaccharide (LPS) target genes that contribute to the inflammatory phenotype. Here, we showed that the protein kinase Akt1, which is activated by LPS, positively regulated miRNAs let-7e and miR-181c but negatively regulated miR-155 and miR-125b. In silico analyses and transfection studies revealed that let-7e repressed Toll-like receptor 4 (TLR4), whereas miR-155 repressed SOCS1, two proteins critical for LPS-driven TLR signaling, which regulate endotoxin sensitivity and tolerance. As a result, Akt1(-/-) macrophages exhibited increased responsiveness to LPS in culture and Akt1(-/-) mice did not develop endotoxin tolerance in vivo. Overexpression of let-7e and suppression of miR-155 in Akt1(-/-) macrophages restored sensitivity and tolerance to LPS in culture and in animals. These results indicate that Akt1 regulates the response of macrophages to LPS by controlling miRNA expression.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization

Alicia Arranz; Christina Doxaki; Eleni Vergadi; Yeny Martinez de la Torre; Katerina Vaporidi; Eleni Lagoudaki; Eleftheria Ieronymaki; Ariadne Androulidaki; Maria Venihaki; Andrew N. Margioris; Efstathios N. Stathopoulos; Philip N. Tsichlis; Christos Tsatsanis

Activated macrophages are described as classically activated or M1 type and alternatively activated or M2 type, depending on their response to proinflammatory stimuli and the expression of genetic markers including iNOS, arginase1, Ym1, and Fizz1. Here we report that Akt kinases differentially contribute to macrophage polarization, with Akt1 ablation giving rise to an M1 and Akt2 ablation resulting in an M2 phenotype. Accordingly, Akt2−/− mice were more resistant to LPS-induced endotoxin shock and to dextran sulfate sodium (DSS)-induced colitis than wild-type mice, whereas Akt1−/− mice were more sensitive. Cell depletion and reconstitution experiments in a DSS-induced colitis model confirmed that the effect was macrophage-dependent. Gene-silencing studies showed that the M2 phenotype of Akt2−/− macrophages was cell autonomous. The microRNA miR-155, whose expression was repressed in naive and in LPS-stimulated Akt2−/− macrophages, and its target C/EBPβ appear to play a key role in this process. C/EBPβ, a hallmark of M2 macrophages that regulates Arg1, was up-regulated upon Akt2 ablation or silencing. Overexpression or silencing of miR-155 confirmed its central role in Akt isoform-dependent M1/M2 polarization of macrophages.


Infection and Immunity | 2002

Corticotropin-Releasing Hormone Augments Proinflammatory Cytokine Production from Macrophages In Vitro and in Lipopolysaccharide-Induced Endotoxin Shock in Mice

Sofia Agelaki; Christos Tsatsanis; Achille Gravanis; Andrew N. Margioris

ABSTRACT Corticotropin-releasing hormone (CRH) exerts an anti-inflammatory effect indirectly, via cortisole production, and a proinflammatory effect directly on immune cells. The aim of the present work was to examine the effect of CRH on macrophage-derived cytokines both in vitro and in vivo. For the in vitro experiments we used two types of macrophages: (i) the RAW264.7 monocyte/macrophage cell line and (ii) thioglycolate-elicited peritoneal macrophages from BALB/c mice. We have found that CRH enhanced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 production. For the in vivo experiments we have used the LPS-induced endotoxin shock model in BALB/c mice, an established model for systemic inflammation in which macrophages are the major source of the proinflammatory cytokines responsible for the development of the shock. Administration of antalarmin, a synthetic CRH receptor 1 (CRHR1) antagonist, prior to LPS prolonged survival in a statistically significant manner. The effect was more evident at the early stages of endotoxin shock. CRHR1 blockade suppressed LPS-induced elevation of the macrophage-derived cytokines TNF-α, IL-1β, and IL-6, confirming the role of CRH signals in cytokine expression. In conclusion, our data suggest that CRH signals play an early and crucial role in augmenting LPS-induced proinflammatory cytokine production by macrophages. Our data suggest that the diffuse neuroendocrine system via CRH directly affects the immune system at the level of macrophage activation and cytokine production.


Annals of the New York Academy of Sciences | 2006

Neurosteroids as Endogenous Inhibitors of Neuronal Cell Apoptosis in Aging

Ioannis Charalampopoulos; Vassiliki-Ismini Alexaki; Christos Tsatsanis; Vassilis Minas; Erene Dermitzaki; Iakovos Lasaridis; Lina Vardouli; Christos Stournaras; Andrew N. Margioris; Elias Castanas; Achilleas Gravanis

Abstract:  The neuroactive steroids dehydroepiandrosterone (DHEA), its sulfate ester DHEAS, and allopregnanolone (Allo) are produced in the adrenals and the brain. Their production rate and levels in serum, brain, and adrenals decrease gradually with advancing age. The decline of their levels was associated with age‐related neuronal dysfunction and degeneration, most probably because these steroids protect central nervous system (CNS) neurons against noxious agents. Indeed, DHEA(S) protects rat hippocampal neurons against NMDA‐induced excitotoxicity, whereas Allo ameliorates NMDA‐induced excitotoxicity in human neurons. These steroids exert also a protective role on the sympathetic nervous system. Indeed, DHEA, DHEAS, and Allo protect chromaffin cells and the sympathoadrenal PC12 cells (an established model for the study of neuronal cell apoptosis and survival) against serum deprivation–induced apoptosis. Their effects are time‐ and dose‐dependent with EC50 1.8, 1.1, and 1.5 nM, respectively. The prosurvival effect of DHEA(S) appears to be NMDA‐, GABAA‐ sigma1‐, or estrogen receptor‐independent, and is mediated by G‐protein‐coupled‐specific membrane binding sites. It involves the antiapoptotic Bcl‐2 proteins, and the activation of prosurvival transcription factors CREB and NF‐κB, upstream effectors of the antiapoptotic Bcl‐2 protein expression, as well as prosurvival kinase PKCα/β, a posttranslational activator of Bcl‐2. Furthermore, they directly stimulate biosynthesis and release of neuroprotective catecholamines, exerting a direct transcriptional effect on tyrosine hydroxylase, and regulating actin depolymerization and submembrane actin filament disassembly, a fast‐response cellular system regulating trafficking of catecholamine vesicles. These findings suggest that neurosteroids may act as endogenous neuroprotective factors. The decline of neurosteroid levels during aging may leave the brain unprotected against neurotoxic challenges.


Journal of Biological Chemistry | 2002

Corticotropin-releasing hormone induces Fas ligand production and apoptosis in PC12 cells via activation of p38 mitogen-activated protein kinase.

Erini Dermitzaki; Christos Tsatsanis; Achille Gravanis; Andrew N. Margioris

Recent experimental findings involve corticotropin-releasing hormone (CRH) in the cellular response to noxious stimuli and possibly apoptosis. The aim of the present work was to examine the effect of CRH on apoptosis and the Fas/Fas ligand system in an in vitro model, the PC12 rat pheochromocytoma cell line, which is widely used in the study of apoptosis and at the same time expresses the CRH/CRH receptor system. We have found the following. CRH induced Fas ligand production and apoptosis. These effects were mediated by the CRH type 1 receptor because its antagonist antalarmin blocked CRH-induced apoptosis and Fas ligand expression. CRH activated p38 mitogen-activated protein kinase, which was found to be essential for CRH-induced apoptosis and Fas ligand production. CRH also promoted a rapid and transient activation of ERK1/2, which, however, was not necessary for either CRH-induced apoptosis or Fas ligand production. Thus, CRH promotes PC12 apoptosis via the CRH type 1 receptor, which induces Fas ligand production via activation of p38.


Oncogene | 1998

Tpl-2 induces IL-2 expression in T-cell lines by triggering multiple signaling pathways that activate NFAT and NF-κB

Christos Tsatsanis; Christos Patriotis; Philip N. Tsichlis

The Tpl-2 kinase activates the nuclear factor of activated T cells (NFAT) and induces IL-2 expression in T-cell lines. Here we show that the activation of the IL-2 promoter by Tpl-2 is inhibited by mutant signaling molecules that inhibit the mitogen-activated protein kinase (MAPK) or the calcineurin/NFAT pathways and is promoted by combinations of signaling molecules that activate these pathways. We, therefore, conclude that signals generated by the convergence of the MAPK and the calcineurin/NFAT pathway are necessary and sufficient for the activation of the IL-2 promoter by Tpl-2. The activation of both the IL-2 promoter and an NFAT-driven minimal promoter were shown to depend on signals transduced by Raf1. However, it was only the IL-2 promoter whose activation by Tpl-2 was fully blocked by the dominant negative mutant MEK1S218/222A and the MEK1/MEK2 inhibitor PD098059. Since the activation of NFAT is MAPK-dependent these findings suggested that the activation of MAPK by Tpl-2 is either independent or only partially dependent on MEK1 and MEK2. In addition, they suggested that the activation of the IL-2 promoter is under the control of not only NFAT but also a second factor whose activation is MEK-dependent. Experiments in COS-1 and EL-4 cells confirmed both hypotheses and revealed that the second factor activated by Tpl-2 is NF-κB. While the activation of the IL-2 promoter and an NFAT-driven minimal promoter by Tpl-2 was fully blocked by the dominant negative mutant NFATΔ418, it was only partially blocked by the calcineurin inhibitor cyclosporin A suggesting that the Tpl-2-mediated NFAT activation is under the control of a combination of calcineurin-dependent and independent pathways. Both pathways were fully blocked by Bcl-2 or Bcl-XL.


FEBS Letters | 2005

Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2

Christos Tsatsanis; Ariadne Androulidaki; Erini Dermitzaki; Ioannis Charalampopoulos; Joachim Spiess; Achille Gravanis; Andrew N. Margioris

Macrophages undergo apoptosis as a mechanism of regulating their activation and the inflammatory reaction. Macrophages express the Corticotropin‐Releasing Factor Receptor‐2 (CRFR2) the endogenous agonists of which, the urocortins, are also present at the site of inflammation. We have found that urocortins induced macrophage apoptosis in a dose‐ and time‐dependent manner via CRFR2. In contrast to lipopolysaccharide (LPS)‐induced apoptosis, the pro‐apoptosis pathway activated by urocortins involved the pro‐apoptotic Bax and Bad proteins and not nitric oxide, JNK and p38MAPK characteristic of LPS. In conclusion, our data suggest that endogenous CRFR2 ligands exert an anti‐inflammatory effect via induction of macrophage apoptosis.


The FASEB Journal | 2006

G protein-associated, specific membrane binding sites mediate the neuroprotective effect of dehydroepiandrosterone

Ioannis Charalampopoulos; Vassilia-Ismini Alexaki; Iakovos Lazaridis; Erene Dermitzaki; Nicolaos Avlonitis; Christos Tsatsanis; Theodora Calogeropoulou; Andrew N. Margioris; Elias Castanas; Achille Gravanis

The neurosteroid dehydroepiandrosterone (DHEA) at 1 nM protects NMDA‐/GABAA‐receptor negative neural crest‐derived PC12 cells from apoptosis. We now report that membrane‐impermeable DHEA‐BSA conjugate replaces unconjugated DHEA in protecting serum‐deprived PC12 cells from apoptosis (IC50=1.5 nM). Protection involves phosphorylation of the prosurvival factor Src and induction of the anti‐apoptotic protein Bcl‐2 and is sensitive to pertussis toxin. Binding assays of [3H]DHEA on isolated PC12 cell membranes revealed saturation within 30 min and binding of DHEA with a Kd of 0.9 nM. A similar binding activity was detectable in isolated membranes from rat hippocampus and from normal human adrenal chromaffin cells. The presence of DHEA‐specific membrane binding sites was confirmed by flow cytometry and confocal laser microscopy of DHEA‐BSA‐FITC stained cells. In contrast to estrogens and progestins, glucocorticoids and androgens displaced DHEA from its membrane binding sites but with a 10‐fold lower affinity than DHEA (IC50=9.3 and 13.6 nM, respectively). These agents acted as pure antagonists, blocking the antiapoptotic effect of DHEA as well as the induction of Bcl‐2 proteins and Src kinase activation. In conclusion, our findings suggest that neural crest‐derived cells possess specific DHEA membrane binding sites coupled to G proteins. Binding to these sites confers neuroprotection.


Journal of Cellular Physiology | 2007

Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-α release from macrophages via induction of COX-2 and PGE2†

Christos Tsatsanis; Ariadne Androulidaki; Erini Dermitzaki; Achille Gravanis; Andrew N. Margioris

Corticotropin‐releasing factor (CRF), the principal regulator of the hypothalamus‐pituitary‐adrenal (HPA) axis, also modulates the inflammatory response directly, via its effect on mast cells and macrophages. On macrophages, it augments production of lipopolysaccharide (LPS)‐induced pro‐inflammatory cytokines. CRF and its related peptides may also act as anti‐inflammatory agents. Aim of the present work was to examine the role of macrophages on the anti‐inflammatory effects of CRF‐peptides and the mechanism involved. Thus, we examined if CRF receptor 1 (CRF1) and CRF2 agonists exert any anti‐inflammatory effect on primary mouse macrophages. We have found that: (a) CRF, Urocortin (UCN)1 and UCN2 transiently suppressed the release of Tumor Necrosis Factor‐alpha (TNF‐α) in LPS‐activated macrophages, an effect peaking at 4 h. This effect did not involve changes on TNF‐α transcription. (b) CRF peptide‐induced suppression of TNF‐α release depended on induction of COX‐2 and PGE2 synthesis. (c) Use of specific CRF1 and CRF2 antagonists suggested that this effect involved both CRF receptor types. (d) The effect of CRF‐peptides on COX‐2 was mediated via PI3K and p38MAPK. (e) Longer exposure of macrophages to CRF‐peptides resulted in induction of TNF‐α production via enhancement of its transcription. In conclusion, this is the first report suggesting that CRF1 and CRF2 agonists exert a biphasic effect on macrophages. During the early stages of the inflammatory response, they suppress TNF‐α release via induction of COX‐2/PGE2 while later on they induce TNF‐α transcription. Hence, the reported anti‐inflammatory effect of CRF‐peptides appears to involve macrophages and is confined at the early stage of inflammation. J. Cell. Physiol. 210: 774–783, 2007.


Journal of Immunology | 2006

Corticotropin-Releasing Factor and the Urocortins Induce the Expression of TLR4 in Macrophages via Activation of the Transcription Factors PU.1 and AP-1

Christos Tsatsanis; Ariadne Androulidaki; Themis Alissafi; Ioannis Charalampopoulos; Erini Dermitzaki; Thierry Roger; Achille Gravanis; Andrew N. Margioris

Corticotropin-releasing factor (CRF) augments LPS-induced proinflammatory cytokine production from macrophages. The aim of the present study was to determine the mechanism by which CRF and its related peptides urocortins (UCN) 1 and 2 affect LPS-induced cytokine production. We examined their role on TLR4 expression, the signal-transducing receptor of LPS. For this purpose, the murine macrophage cell line RAW 264.7 and primary murine peritoneal macrophages were used. Exposure of peritoneal macrophages and RAW 264.7 cells to CRF, UCN1, or UCN2 up-regulated TLR4 mRNA and protein levels. To study whether that effect occurred at the transcriptional level, RAW 264.7 cells were transfected with a construct containing the proximal region of the TLR4 promoter linked to the luciferase gene. CRF peptides induced activation of the TLR4 promoter, an effect abolished upon mutation of a proximal PU.1-binding consensus or upon mutation of an AP-1-binding element. Indeed, all three peptides promoted PU.1 binding to the proximal PU.1 site and increased DNA-binding activity to the AP-1 site. The effects of CRF peptides were inhibited by the CRF2 antagonist anti-sauvagine-30, but not by the CRF1 antagonist antalarmin, suggesting that CRF peptides mediated the up-regulation of TLR4 via the CRF2 receptor. Finally, CRF peptides blocked the inhibitory effect of LPS on TLR4 expression. In conclusion, our data suggest that CRF peptides play an important role on macrophage function. They augment the effect of LPS by inducing Tlr4 gene expression, through CRF2, via activation of the transcription factors PU.1 and AP-1.

Collaboration


Dive into the Christos Tsatsanis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge