Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christy E. Trussoni is active.

Publication


Featured researches published by Christy E. Trussoni.


Journal of Biological Chemistry | 2010

NFκB p50-CCAAT/enhancer-binding protein β (C/EBPβ)-mediated transcriptional repression of microRNA let-7i following microbial infection.

Steven P. O'Hara; Patrick L. Splinter; Gabriella B. Gajdos; Christy E. Trussoni; Martin E. Fernandez-Zapico; Xian Ming Chen; Nicholas F. LaRusso

MicroRNAs, central players of numerous cellular processes, regulate mRNA stability or translational efficiency. Although these molecular events are established, the mechanisms regulating microRNA function and expression remain largely unknown. The microRNA let-7i regulates Toll-like receptor 4 expression. Here, we identify a novel transcriptional mechanism induced by the protozoan parasite Cryptosporidium parvum and Gram(−) bacteria-derived lipopolysaccharide (LPS) mediating let-7i promoter silencing in human biliary epithelial cells (cholangiocytes). Using cultured cholangiocytes, we show that microbial stimulus decreased let-7i expression, and promoter activity. Analysis of the mechanism revealed that microbial infection promotes the formation of a NFκB p50-C/EBPβ silencer complex in the regulatory sequence. Chromatin immunoprecipitation assays (ChIP) demonstrated that the repressor complex binds to the let-7i promoter following microbial stimulus and promotes histone-H3 deacetylation. Our results provide a novel mechanism of transcriptional regulation of cholangiocyte let-7i expression following microbial insult, a process with potential implications for epithelial innate immune responses in general.


Hepatology | 2014

Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis.

James H. Tabibian; Steven P. O'Hara; Patrick L. Splinter; Christy E. Trussoni; Nicholas F. LaRusso

Primary sclerosing cholangitis (PSC) is an incurable cholangiopathy of unknown etiopathogenesis. Here we tested the hypothesis that cholangiocyte senescence is a pathophysiologically important phenotype in PSC. We assessed markers of cellular senescence and senescence‐associated secretory phenotype (SASP) in livers of patients with PSC, primary biliary cirrhosis, hepatitis C, and in normals by fluorescent in situ hybridization (FISH) and immunofluorescence microscopy (IFM). We tested whether endogenous and exogenous biliary constituents affect senescence and SASP in cultured human cholangiocytes. We determined in coculture whether senescent cholangiocytes induce senescence in bystander cholangiocytes. Finally, we explored signaling mechanisms involved in cholangiocyte senescence and SASP. In vivo, PSC cholangiocytes expressed significantly more senescence‐associated p16INK4a and γH2A.x compared to the other three conditions; expression of profibroinflammatory SASP components (i.e., IL‐6, IL‐8, CCL2, PAI‐1) was also highest in PSC cholangiocytes. In vitro, several biologically relevant endogenous (e.g., cholestane 3,5,6 oxysterol) and exogenous (e.g., lipopolysaccharide) molecules normally present in bile induced cholangiocyte senescence and SASP. Furthermore, experimentally induced senescent human cholangiocytes caused senescence in bystander cholangiocytes. N‐Ras, a known inducer of senescence, was increased in PSC cholangiocytes and in experimentally induced senescent cultured cholangiocytes; inhibition of Ras abrogated experimentally induced senescence and SASP. Conclusion: Cholangiocyte senescence induced by biliary constituents by way of N‐Ras activation is an important pathogenic mechanism in PSC. Pharmacologic inhibition of N‐Ras with a resultant reduction in cholangiocyte senescence and SASP is a new therapeutic approach for PSC. (Hepatology 2014;59:2263–2275)


Hepatology | 2016

Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis

James H. Tabibian; Steven P. O'Hara; Christy E. Trussoni; Pamela S. Tietz; Patrick L. Splinter; Taofic Mounajjed; Lee R. Hagey; Nicholas F. LaRusso

Primary sclerosing cholangitis (PSC) is a chronic, idiopathic, fibroinflammatory cholangiopathy. The role of the microbiota in PSC etiopathogenesis may be fundamentally important, yet remains obscure. We tested the hypothesis that germ‐free (GF) mutltidrug resistance 2 knockout (mdr2−/−) mice develop a distinct PSC phenotype, compared to conventionally housed (CV) mdr2−/− mice. Mdr2−/− mice (n = 12) were rederived as GF by embryo transfer, maintained in isolators, and sacrificed at 60 days in parallel with age‐matched CV mdr2−/− mice. Serum biochemistries, gallbladder bile acids, and liver sections were examined. Histological findings were validated morphometrically, biochemically, and by immunofluorescence microscopy (IFM). Cholangiocyte senescence was assessed by p16INK4a in situ hybridization in liver tissue and by senescence‐associated β‐galactosidase staining in a culture‐based model of insult‐induced senescence. Serum biochemistries, including alkaline phosphatase, aspartate aminotransferase, and bilirubin, were significantly higher in GF mdr2−/− (P < 0.01). Primary bile acids were similar, whereas secondary bile acids were absent, in GF mdr2−/− mice. Fibrosis, ductular reaction, and ductopenia were significantly more severe histopathologically in GF mdr2−/− mice (P < 0.01) and were confirmed by hepatic morphometry, hydroxyproline assay, and IFM. Cholangiocyte senescence was significantly increased in GF mdr2−/− mice and abrogated in vitro by ursodeoxycholic acid (UDCA) treatment. Conclusions: GF mdr2−/− mice exhibit exacerbated biochemical and histological features of PSC and increased cholangiocyte senescence, a characteristic and potential mediator of progressive biliary disease. UDCA, a commensal microbial metabolite, abrogates senescence in vitro. These findings demonstrate the importance of the commensal microbiota and its metabolites in protecting against biliary injury and suggest avenues for future studies of biomarkers and therapeutic interventions in PSC. (Hepatology 2016;63:185–196)


Journal of Biological Chemistry | 2011

Cholangiocyte N-Ras Protein Mediates Lipopolysaccharide-induced Interleukin 6 Secretion and Proliferation

Steven P. O'Hara; Patrick L. Splinter; Christy E. Trussoni; Gabriella B. Gajdos; Pooja N. Lineswala; Nicholas F. LaRusso

Cholangiocytes, the epithelial cells lining the bile ducts in the liver, are periodically exposed to potentially injurious microbes and/or microbial products. As a result, cholangiocytes actively participate in microbe-associated, hepatic proinflammatory responses. We previously showed that infection of cultured human cholangiocytes with the protozoan parasite, Cryptosporidium parvum, or treatment with Gram-negative bacteria-derived LPS, activates NFκB in a myeloid differentiation 88 (MyD88)-dependent manner. Here, we describe a novel signaling pathway initiated by Toll-like receptors (TLRs) involving the small GTPase, Ras, that mediates cholangiocyte proinflammatory cytokine production and induction of cholangiocyte proliferation. Using cultured human cholangiocytes and a Ras activation assay, we found that agonists of plasma membrane TLRs (TLR 1, 2, 4, 5, and 6) rapidly (<10 min) activated N-Ras, but not other p21 Ras isoforms, resulting in the rapid (<15 min) phosphorylation of the downstream Ras effector, ERK1/2. RNA interference-induced depletion of TRAF6, a downstream effector of MyD88 and known activator of MAPK signaling, had no effect on N-Ras activation. Following N-Ras activation the proinflammatory cytokine, IL6, is rapidly secreted. Using a luciferase reporter, we demonstrated that LPS treatment induced IL6 promoter-driven luciferase which was suppressed using MEK/ERK pharmacologic inhibitors (PD98059 or U0126) and RNAi-induced depletion of N-Ras. Finally, we showed that LPS increased cholangiocyte proliferation (1.5-fold), which was inhibited by depletion of N-Ras; TLR agonist-induced proliferation was also inhibited following pretreatment with an IL6 receptor-blocking antibody. Together, our results support a novel signaling axis involving microbial activation of N-Ras likely involved in the cholangiocyte pathogen-induced proinflammatory response.


American Journal of Pathology | 2011

Aquaporin-1 Promotes Angiogenesis, Fibrosis, and Portal Hypertension Through Mechanisms Dependent on Osmotically Sensitive MicroRNAs

Robert C. Huebert; Kumaravelu Jagavelu; Helen Hendrickson; Meher M. Vasdev; Juan Pablo Arab; Patrick L. Splinter; Christy E. Trussoni; Nicholas F. LaRusso; Vijay H. Shah

Changes in hepatic vasculature accompany fibrogenesis, and targeting angiogenic molecules often attenuates fibrosis in animals. Aquaporin-1 (AQP1) is a water channel, overexpressed in cirrhosis, that promotes angiogenesis by enhancing endothelial invasion. The effect of AQP1 on fibrogenesis in vivo and the mechanisms driving AQP1 expression during cirrhosis remain unclear. The purpose of this study was to test the effect of AQP1 deletion in cirrhosis and explore mechanisms regulating AQP1. After bile duct ligation, wild-type mice overexpress AQP1 that colocalizes with vascular markers and sites of robust angiogenesis. AQP1 knockout mice demonstrated reduced angiogenesis compared with wild-type mice, as evidenced by immunostaining and endothelial invasion/proliferation in vitro. Fibrosis and portal hypertension were attenuated based on immunostaining, portal pressure, and spleen/body weight ratio. AQP1 protein, but not mRNA, was induced by hyperosmolality in vitro, suggesting post-transcriptional regulation. Endothelial cells from normal or cirrhotic mice were screened for microRNA (miR) expression using an array and a quantitative PCR. miR-666 and miR-708 targeted AQP1 mRNA and were decreased in cirrhosis and in cells exposed to hyperosmolality, suggesting that these miRs mediate osmolar changes via AQP1. Binding of the miRs to the untranslated region of AQP1 was assessed using luciferase assays. In conclusion, AQP1 promotes angiogenesis, fibrosis, and portal hypertension after bile duct ligation and is regulated by osmotically sensitive miRs.


Laboratory Investigation | 2014

Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis

James H. Tabibian; Christy E. Trussoni; Steven P. O'Hara; Patrick L. Splinter; Julie K. Heimbach; Nicholas F. LaRusso

Primary sclerosing cholangitis (PSC) is a chronic, idiopathic cholangiopathy. The role of cholangiocytes (biliary epithelial cells) in PSC pathogenesis is unknown and remains an active area of research. Here, through cellular, molecular and next-generation sequencing (NGS) methods, we characterize and identify phenotypic and signaling features of isolated PSC patient-derived cholangiocytes. We isolated cholangiocytes from stage 4 PSC patient liver explants by dissection, differential filtration and immune-magnetic bead separation. We maintained cholangiocytes in culture and assessed for: (i) cholangiocyte, cell adhesion and inflammatory markers; (ii) proliferation rate; (iii) transepithelial electrical resistance (TEER); (iv) cellular senescence; and (v) transcriptomic profiles by NGS. We used two well-established normal human cholangiocyte cell lines (H69 and NHC) as controls. Isolated PSC cells expressed cholangiocyte (eg, cytokeratin 7 and 19) and epithelial cell adhesion markers (EPCAM, ICAM) and were negative for hepatocyte and myofibroblast markers (albumin, α-actin). Proliferation rate was lower for PSC compared with normal cholangiocytes (4 vs 2 days, respectively, P<0.01). Maximum TEER was also lower in PSC compared with normal cholangiocytes (100 vs 145 Ωcm2, P<0.05). Interleukin-6 (IL-6) and IL-8 (protein and mRNA) were both increased compared with NHCs and H69s (all P<0.01). The proportion of cholangiocytes staining positive for senescence-associated β-galactosidase was higher in PSC cholangiocytes compared with NHCs (48% vs 5%, P<0.01). Finally, NGS confirmed cholangiocyte marker expression in isolated PSC cholangiocytes and extended our findings regarding pro-inflammatory and senescence-associated signaling. In conclusion, we have demonstrated that high-purity cholangiocytes can be isolated from human PSC liver and grown in primary culture. Isolated PSC cholangiocytes exhibit a phenotype that may reflect their in vivo contribution to disease and serve as a vital tool for in vitro investigation of biliary pathobiology and identification of new therapeutic targets in PSC.


Journal of Parasitology | 2011

TLR4 Promotes Cryptosporidium parvum Clearance in a Mouse Model of Biliary Cryptosporidiosis

Steven P. O'Hara; Pamela S. Tietz Bogert; Christy E. Trussoni; Xian Ming Chen; Nicholas F. LaRusso

abstract:  Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, express multiple toll-like receptors (TLRs) and, thus, have the capacity to recognize and respond to microbial pathogens. In previous work, we demonstrated that TLR4, which is activated by gram-negative lipopolysaccharide (LPS), is upregulated in cholangiocytes in response to infection with Cryptosporidium parvum in vitro and contributes to nuclear factor-kappaB (NF-kB) activation. Here, using an in vivo model of biliary cryptosporidiosis, we addressed the functional role of TLR4 in C. parvum infection dynamics and hepatobiliary pathophysiology. We observed that C57BL mice clear the infection by 3 wk post-infection (PI). In contrast, parasites were detected in bile and stool in TLR4-deficient mice at 4 wk PI. The liver enzymes alanine transaminase (ALT) and aspartate transaminase (AST), and the proinflammatory cytokines tumor necrosis factor (TNF)-&agr;, interferon (IFN)-&ggr;, and interleukin (IL)-6 peaked at 1 to 2 wk PI and normalized by 4 wk in infected C57BL mice. C57BL mice also demonstrated increased cholangiocyte proliferation (PCNA staining) at 1 wk PI that was resolved by 2 wk PI. In contrast, TLR4-deficient mice showed persistently elevated serum ALT and AST, elevated hepatic IL-6 levels, and histological evidence of hepatocyte necrosis, increased inflammatory cell infiltration, and cholangiocyte proliferation through 4 wk PI. These data suggest that a TLR4-mediated response is required for efficient eradication of biliary C. parvum infection in vivo, and lack of this pattern-recognition receptor contributes to an altered inflammatory response and an increase in hepatobiliary pathology.


PLOS ONE | 2015

Lipopolysaccharide (LPS)-induced biliary epithelial cell NRas activation requires Epidermal Growth Factor Receptor (EGFR)

Christy E. Trussoni; James H. Tabibian; Patrick L. Splinter; Steven P. O’Hara

Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.


Laboratory Investigation | 2013

Micro-computed tomography and nuclear magnetic resonance imaging for noninvasive, live-mouse cholangiography

James H. Tabibian; Slobodan Macura; Steven P. O'Hara; Jeff L. Fidler; James F. Glockner; Naoki Takahashi; Val J. Lowe; Bradley J. Kemp; Prasanna K. Mishra; Pamela S. Tietz; Patrick L. Splinter; Christy E. Trussoni; Nicholas F. LaRusso

The cholangiopathies are a diverse group of biliary tract disorders, many of which lack effective treatment. Murine models are an important tool for studying their pathogenesis, but existing noninvasive methods for assessing biliary disease in vivo are not optimal. Here we report our experience with using micro-computed tomography (microCT) and nuclear magnetic resonance (MR) imaging to develop a technique for live-mouse cholangiography. Using mdr2 knockout (mdr2KO, a model for primary sclerosing cholangitis (PSC)), bile duct-ligated (BDL), and normal mice, we performed in vivo: (1) microCT on a Siemens Inveon PET/CT scanner and (2) MR on a Bruker Avance 16.4 T spectrometer, using Turbo Rapid Acquisition with Relaxation Enhancement, IntraGate Fast Low Angle Shot, and Half-Fourier Acquisition Single-shot Turbo Spin Echo methods. Anesthesia was with 1.5–2.5% isoflurane. Scans were performed with and without contrast agents (iodipamide meglumine (microCT), gadoxetate disodium (MR)). Dissection and liver histology were performed for validation. With microCT, only the gallbladder and extrahepatic bile ducts were visualized despite attempts to optimize timing, route, and dose of contrast. With MR, the gallbladder, extra-, and intrahepatic bile ducts were well-visualized in mdr2KO mice; the cholangiographic appearance was similar to that of PSC (eg, multifocal strictures) and could be improved with contrast administration. In BDL mice, MR revealed cholangiographically distinct progressive dilation of the biliary tree without ductal irregularity. In normal mice, MR allowed visualization of the gallbladder and extrahepatic ducts, but only marginal visualization of the diminutive intrahepatic ducts. One mouse died during microCT and MR imaging, respectively. Both microCT and MR scans could be obtained in ≤20 min. We, therefore, demonstrate that MR cholangiography can be a useful tool for longitudinal studies of the biliary tree in live mice, whereas microCT yields suboptimal duct visualization despite requiring contrast administration. These findings support further development and application of MR cholangiography to the study of mouse models of PSC and other cholangiopathies.


Hepatology | 2018

Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice

Anja Moncsek; Mohammed S. Al-Suraih; Christy E. Trussoni; Steven P. O'Hara; Patrick L. Splinter; Camille Zuber; E. Patsenker; Piero V. Valli; Christian D. Fingas; Achim Weber; Yi Zhu; Tamar Tchkonia; James L. Kirkland; Gregory J. Gores; Beat Müllhaupt; Nicholas F. LaRusso; Joachim C. Mertens

Cholangiocyte senescence has been linked to primary sclerosing cholangitis (PSC). Persistent secretion of growth factors by senescent cholangiocytes leads to the activation of stromal fibroblasts (ASFs), which are drivers of fibrosis. The activated phenotype of ASFs is characterized by an increased sensitivity to apoptotic stimuli. Here, we examined the mechanisms of apoptotic priming in ASFs and explored a combined targeting strategy to deplete senescent cholangiocytes and ASFs from fibrotic tissue to ameliorate liver fibrosis. Using a coculture system, we determined that senescent cholangiocytes promoted quiescent mesenchymal cell activation in a platelet‐derived growth factor (PDGF)‐dependent manner. We also identified B‐cell lymphoma‐extra large (Bcl‐xL) as a key survival factor in PDGF‐activated human and mouse fibroblasts. Bcl‐xL was also up‐regulated in senescent cholangiocytes. In vitro, inhibition of Bcl‐xL by the small molecule Bcl‐2 homology domain 3 mimetic, A‐1331852, or Bcl‐xL‐specific small interfering RNA induced apoptosis in PDGF‐activated fibroblasts, but not in quiescent fibroblasts. Likewise, inhibition of Bcl‐xL reduced the survival and increased apoptosis of senescent cholangiocytes, compared to nonsenescent cells. Treatment of multidrug resistance 2 gene knockout (Mdr2−/−) mice with A‐1331852 resulted in an 80% decrease in senescent cholangiocytes, a reduction of fibrosis‐inducing growth factors and cytokines, decrease of α‐smooth muscle actin–positive ASFs, and finally in a significant reduction of liver fibrosis. Conclusion: Bcl‐xL is a key survival factor in ASFs as well as in senescent cholangiocytes. Treatment with the Bcl‐xL‐specific inhibitor, A‐1331852, reduces liver fibrosis, possibly by a dual effect on activated fibroblasts and senescent cholangiocytes. This mechanism represents an attractive therapeutic strategy in biliary fibrosis. (Hepatology 2018;67:247‐259).

Collaboration


Dive into the Christy E. Trussoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. Tabibian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge