Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chu-Huang Chen is active.

Publication


Featured researches published by Chu-Huang Chen.


Circulation | 2003

Low-Density Lipoprotein in Hypercholesterolemic Human Plasma Induces Vascular Endothelial Cell Apoptosis by Inhibiting Fibroblast Growth Factor 2 Transcription

Chu-Huang Chen; Tao Jiang; Jun Hai Yang; Wei Jiang; Jonathan Lu; Gopal K. Marathe; Henry J. Pownall; Christie M. Ballantyne; Thomas M. McIntyre; Philip D. Henry; Chao Yuh Yang

Background—Apoptosis of vascular endothelial cells (ECs) can be induced in vitro by experimentally modified LDL. Description of proapoptotic circulating lipoproteins may significantly enhance understanding of atherothrombosis pathophysiology. Methods and Results—Fast protein liquid chromatography of LDL samples from 7 asymptomatic, hypercholesterolemic patients yielded subfractions L1–L5 in increasing electronegativity. L4 and L5 were not detectable or collectible in normolipidemic samples. In bovine aortic EC cultures, L5 induced marked apoptosis and L4 had a mild effect, whereas hypercholesterolemic or normolipidemic L1–L3 had negligible effects. Compared with copper-oxidized LDL, L5 was only mildly oxidized, although its propensity to form conjugated dienes in response to copper exceeded that of other subfractions. L5-induced apoptosis was associated with suppressed fibroblast growth factor 2 (FGF-2) transcription, as assessed by nuclear run-on analysis. Degrading platelet-activating factor (PAF)-like lipids in L5 by a recombinant PAF acetylhydrolase prevented both FGF-2 downregulation and apoptosis. Furthermore, the ability of L5 lipid extract to induce calcium influx into neutrophils was lost after pretreatment of the extract with PAF acetylhydrolase. FGF-2 supplementation, PAF receptor (PAFR) blockade with WEB-2086, and inactivation of PAFR-coupled Gi protein with pertussis toxin all effectively attenuated L5-induced apoptosis. Conclusions—Our findings indicate that a highly electronegative, mildly oxidized LDL subfraction present in human hypercholesterolemic but not normolipidemic plasma can induce apoptosis in cultured ECs. The evidence that a freshly isolated LDL species modulates transcription of FGF-2 may provide a physiological insight into the mechanism of vascular EC apoptosis in hypercholesterolemia.


Circulation | 2000

Oxidized Low-Density Lipoproteins Inhibit Endothelial Cell Proliferation by Suppressing Basic Fibroblast Growth Factor Expression

Chu-Huang Chen; Wei Jiang; David P. Via; Sherry Luo; Tz-Rung Li; Yuan-Teh Lee; Philip D. Henry

BACKGROUND Hyperlipidemia inhibits proliferation of endothelial cells (ECs) in culture and angiogenesis in vivo and in arterial explants. Elucidation of the mechanisms may suggest novel therapies against atherosclerosis. METHODS AND RESULTS Basic fibroblast growth factor (bFGF) expression and mitogenic effects were assessed in bovine aortic ECs incubated with oxidized LDL (ox-LDL). Compared with native LDL and lipoprotein-free controls, ox-LDL reduced bFGF mRNA levels in a time- and concentration-dependent manner, 100 microg/mL producing a maximum reduction of 40% to 50% within 24 to 48 hours. There were commensurate reductions in intracellular and extracellular bFGF concentrations, DNA and total RNA syntheses, and cell replication. FGF receptor 1 and beta-actin mRNA levels were unchanged. Ox-LDL accelerated bFGF mRNA degradation in actinomycin D-treated cells. However, inhibition of bFGF expression by ox-LDL was attenuated by cyclohexamide, indicating a requirement for continuous new protein synthesis for posttranscriptional destabilization. Reduced syntheses of DNA and total RNA were completely restored by bFGF but not by vascular endothelial growth factor. Inhibition of total RNA synthesis achieved by exposing cells to a bFGF-neutralizing antibody was similar in magnitude to that induced by ox-LDL. CONCLUSIONS Cytotoxic effects of ox-LDL on ECs are attributable in part to suppression of bFGF expression.


Circulation Research | 2009

Mediation of Electronegative Low-Density Lipoprotein Signaling by LOX-1 A Possible Mechanism of Endothelial Apoptosis

Jonathan Lu; Jun-Hai Yang; Alan R. Burns; Hsin-Hung Chen; Daming Tang; Jeffrey P. Walterscheid; Shinichi Suzuki; Chao-Yuh Yang; Tatsuya Sawamura; Chu-Huang Chen

The lectin-like oxidized LDL receptor LOX-1 mediates endothelial cell (EC) uptake of experimentally prepared copper-oxidized LDL (oxLDL). To confirm the atherogenic role of this receptor cloned against copper-oxLDL, we examined whether it mediates EC uptake of L5, an electronegative LDL abundant in dyslipidemic but not normolipidemic human plasma. Hypercholesterolemic (LDL-cholesterol, >160 mg/dL) human LDL was fractionated into L1–L5, increasingly electronegative, by ion-exchange chromatography. In cultured bovine aortic ECs (BAECs), L5 upregulated LOX-1 and induced apoptosis. Transfection of BAECs with LOX-1–specific small interfering RNAs (siLOX-1) minimized baseline LOX-1 production and restrained L5-induced LOX-1 upregulation. Internalization of labeled L1–L5 was monitored in BAECs and human umbilical venous ECs by fluorescence microscopy. LOX-1 knockdown with siLOX-1 impeded the endocytosis of L5 but not L1–L4. In contrast, blocking LDL receptor with RAP (LDL receptor–associated protein) stopped the internalization of L1–L4 but not L5. Although chemically different, L5 and oxLDL competed for EC entry through LOX-1. Via LOX-1, L5 signaling hampered Akt phosphorylation and suppressed EC expression of fibroblast growth factor-2 and Bcl-2. L5 also selectively inhibited Bcl-xL expression and endothelial nitric oxide synthase phosphorylation but increased synthesis of Bax, Bad, and tumor necrosis factor-&agr;. Blocking Akt phosphorylation with wortmannin increased LOX-1 expression, suggesting a modulatory role of Akt in LOX-1 synthesis; L5 upregulated LOX-1 by dephosphorylating Akt. Because endothelial nitric oxide synthase and Bcl-2 activities are Akt-dependent, L5 impairs Akt-mediated growth and survival signals in vascular ECs by way of LOX-1. Thus, the L5/LOX-1 complex may play a critical role in atherogenesis and illuminate important targets for disease intervention.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Isolation, Characterization, and Functional Assessment of Oxidatively Modified Subfractions of Circulating Low-Density Lipoproteins

Chao Yuh Yang; Joe L. Raya; Hsin Hung Chen; Chu-Huang Chen; Yasunori Abe; Henry J. Pownall; Addison A. Taylor; Charles V. Smith

Objective—Current evidence suggests that oxidatively modified human plasma low-density lipoproteins (ox-LDLs) are proatherogenic and cytotoxic to endothelial and vascular smooth muscle cells. The present study describes a method using ion-exchange chromatography that is capable of large-scale subfractionation of LDL for adequate analyses of composition or bioactivities. Methods and Results—LDLs from normolipidemic (N-LDL) and homozygous familial hypercholesterolemic (FH-LDL) subjects were separated into 5 subfractions (L1 through L5) by high-capacity ion-exchange chromatography. The most strongly retained fraction from FH subjects, FH-L5, suppressed DNA synthesis in cultured bovine aortic endothelial cells and stimulated mononuclear cell adhesion to cultured endothelial cells under flow conditions in vitro. L5, which represented 1.1±0.2% and 3.7±1.7% of the LDL from N-LDL and FH-LDL, respectively, was more triglyceride-rich (17% versus 5%) and cholesteryl ester-poor (23% versus 33%) than were L1 through L4. Electrophoretic mobilities on agarose gels increased from L1 to L5. According to SDS-PAGE, apolipoprotein B-100 in N-LDL fractions L1 through L5 appeared as a single ≈500-kDa band. In contrast, the fractions isolated from FH-LDL showed substantial fragmentation of the apolipoprotein B-100, including bands between 200 and 116 kDa. Competitive ELISA analyses using a malondialdehyde-specific monoclonal antibody against Cu2+ ox-LDL suggest that FH-L5 is malondialdehyde-modified. Conclusions—Relative to N-LDL, FH-LDL contains higher concentrations of a fraction, L5, that exhibits distinctive physicochemical properties and biological activities that may contribute to initiation and progression of atherogenesis in vivo.


Circulation Research | 2008

Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation

Po Yuan Chang; Shao-Chun Lu; Chii-Ming Lee; Yi Jie Chen; Tracey A. Dugan; Wen Huei Huang; Shwu Fen Chang; Warren S L Liao; Chu-Huang Chen; Yuan-Teh Lee

Homocysteine (Hcy) contributes to atherogenesis and angiostasis by altering the phenotype of arterial endothelial cells (ECs). The present study was aimed at elucidating potential mechanisms by which Hcy can slow EC proliferation and induce EC apoptosis, thereby disrupting endothelial integrity. Given the strong mitogenic and antiapoptotic properties of fibroblast growth factor (FGF)2, we examined whether Hcy can modulate its expression. In cultured human coronary and bovine aortic ECs, Hcy exerted time- and concentration-dependent (0 to 500 &mgr;mol/L) reduction of the mRNA and protein levels of FGF2, whereas vascular endothelial growth factor expression was not affected until Hcy reached a proapoptotic 500 &mgr;mol/L. By testing a panel of signal transduction inhibitors, we found that the Hcy-induced downregulation of FGF2 was specifically attenuated by pertussis toxin, an inhibitor of Gi protein signaling. Hcy induced cell cycle arrest at the G1/S transition and increased TUNEL-positive apoptotic cells in a graded manner. These effects were effectively counteracted by exogenous FGF2. Reporter gene assays showed that Hcy downregulated FGF2 by transcriptional repression of the gene promoter encompassed in a CpG dinucleotide-rich island. This region was heavily methylated at the cytosine residues by Hcy despite decreased methylation potential (S-adenosylmethionine to S-adenosylhomocysteine ratio). Normal levels of FGF2 transcription were restored to ECs simultaneously exposed to Hcy and 5-aza-deoxycytidine. We conclude that homocysteine disrupts the growth and survival of ECs through a G protein–mediated pathway associated with altered promoter DNA methylation and the transcriptional repression of FGF2.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1997

Inhibitory Effects of Hypercholesterolemia and Ox-LDL on Angiogenesis-like Endothelial Growth in Rabbit Aortic Explants Essential Role of Basic Fibroblast Growth Factor

Chu-Huang Chen; Joiner Cartwright; Zheng Li; Sherry Lou; Hai Hoang Nguyen; Antonio M. Gotto; Philip D. Henry

Hypercholesterolemic (HC) rabbits exhibit suppressed compensatory vascular growth after restriction of arterial supply. However, neovascularization is commonly found in atheromas containing inflammatory cells. We used an in vitro model to determine the effects of hypercholesterolemia on angiogenesis in the absence or presence of inflammatory cells. HC rabbit aortic explants (1 mm2) with or without (n = 90 each) lesion-forming inflammatory cells were cultured in a collagen matrix with serum-free medium. Explant-derived endothelial cell growth was organized into capillary-like microtubes (CLM) that could be videomicroscopically quantified. CLM growth from lesion-free HC explants was significantly reduced to 13 +/- 4% of the value in explants (n = 90) from normocholesterolemic (NC, n = 15) rabbits (P < .001). In contrast, in lesion-containing HC explants, the matrix was invaded by foam cells, and CLM growth was not inhibited. Immunoassayable basic fibroblast growth factor (bFGF, in pg/mL) in the culture medium was significantly lower in lesion-free HC (< 5) than NC explants (11 +/- 2, P < .01) or HC explants with lesions (14 +/- 3). In addition, CLM growth was reduced in NC explants incubated with oxidized LDL (ox-LDL, 50-100 micrograms/mL). Exogenous bFGF (10 ng/mL) reversed the inhibitory effects of hypercholesterolemia and ox-LDL, whereas bFGF-neutralizing antibody (10 micrograms/mL) abolished CLM growth in all groups. In cultured rabbit aortic endothelial cells, ox-LDL reduced DNA synthesis, but this inhibition was reversed by bFGF. We conclude that hypercholesterolemia and ox-LDL inhibit angiogenesis like endothelial growth because of a suppressed availability of endogenous bFGF. Retained responsiveness to exogenous bFGF suggests that inducing bFGF expression at targeted sites may improve collateral growth in hyperlipidemic arterial disease.


Journal of Lipid Research | 2008

Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1

Daming Tang; Jonathan Lu; Jeffrey P. Walterscheid; Hsin Hung Chen; David A. Engler; Tatsuya Sawamura; Po Yuan Chang; Hazim J. Safi; Chao Yuh Yang; Chu-Huang Chen

Endothelial progenitor cells (EPCs), important for endothelial regeneration and vasculogenesis, are reduced by cigarette smoking. To elucidate the mechanisms, we examined the effects of electronegative LDL, circulating in chronic smokers, on EPC differentiation. Using ion-exchange chromatography, we purified smoker LDL into five subfractions, L1–L5. In matched, nonsmoking healthy subjects, L5, the most electronegative subfraction, was either absent or scanty. Sustained L5 treatment inhibited CD31 and KDR expression and EPC differentiation, whereas L1–L4 had no effect. L5 also inhibited telomerase activity to accelerate EPC senescence in correlation with reduced Akt phosphorylation. Transfection of day 3 EPCs with dominant negative Akt constructs inhibited CD31 and KDR expression, stalled EPC differentiation, and promoted early senescence. In contrast, transfection with constitutively active Akt rendered the EPCs resistant to L5, allowing normal maturation. L5 upregulated the lectin-like oxidized low density lipoprotein receptor 1 (LOX-1), and pretreatment of EPCs with TS20, a LOX-1-neutralizing antibody, blocked internalization of L5 by EPCs and prevented L5-mediated inhibition of EPC differentiation. Mixing L5 with L1 to physiological L5/L1 ratios did not attenuate L5s effects. These findings suggest that cigarette smoking is associated with the formation of L5, which inhibits EPC differentiation by impairing Akt phosphorylation via the LOX-1 receptor.


Current Vascular Pharmacology | 2004

Fibroblast Growth Factor 2: From Laboratory Evidence to Clinical Application

Chu-Huang Chen; Simon M. Poucher; Jonathan Lu; Philip D. Henry

Fibroblast growth factor 2 (FGF2) is expressed ubiquitously in mesodermal and neuroectodermal cells. Human FGF2 occurs in isoforms translated from a common mRNA by alternative use of AUG (low-molecular weight isoforms) and CUG (high-molecular weight isoforms) start codons. Whereas the high-molecular weight isoforms function in an intracrine manner, the low-molecular weight isoform functions as autocrine, paracrine, and intracrine ligands. FGF2s signals are mediated by a family of high- and low-affinity receptors. The nuclear localization of FGF2 appears to be essential for its mitogenic effects with different isoforms localizing in different nuclear substructures. By regulating the transcription or activity of multiple other genes, FGF2 plays an important role in proliferation, differentiation, and survival of cells of almost all organ systems. Its potent angiogenic effects observed in tissue culture models and healthy animals have prompted clinical trials testing effects of FGF2 protein or genetic material on ischemic tissues. Unfortunately, FGF2-mediated therapeutic angiogenesis has yielded inconclusive results. One possible reason is that single-gene therapy is not sufficient to support the numerous effectors required to generate mature vessels assembled by multiple cells, including pericytes, smooth muscle cells, and endothelial cell subtypes. Another possible reason is that potentially negative effects of dyslipidemia, a common finding in patients with macro- and microvascular disease, on gene therapy have not been taken into account. We have demonstrated that electronegative low-density lipoprotein (LDL) from hypercholesterolemic human plasma downregulates FGF2 by both transcriptional and posttranscriptional mechanisms. In our models, FGF2 downregulation results in angiostasis and endothelial cell apoptosis. Deprivation of endogenous FGF2 may lead to dysregulation of the activities of other survival and angiogenesis-related genes. Delineation of the molecular mechanisms modulating the expression and actions of FGF2 may provide the basis for novel therapeutic interventions.


Current Opinion in Lipidology | 2004

Platelet-activating factor acetylhydrolase: is it good or bad for you?

Chu-Huang Chen

Purpose of review Although findings obtained from various studies are inconclusive in determining whether plasma platelet-activating factor acetylhydrolase, or lipoprotein-associated phospholipase A2, plays a proatherogenic or antiatherogenic role in atherosclerosis, many recent reviews appear to favor it as a risk factor for coronary artery disease. To provide a contrasting view, this review focuses on the enzymes antiatherogenic and antiinflammatory properties. Recent findings A recent report demonstrates that plasma platelet-activating factor acetylhydrolase activity increases in men and women with stable angina or acute coronary syndromes, supporting previously published data that plasma levels of the protein are independently and positively associated with the risk of coronary artery disease. In contrast, at least four lines of evidence indicate that the enzyme has strong antiatherogenic properties: (1) it inhibits the effects of LDL oxidation, (2) genetic deficiency of plasma levels constitutes a risk factor for vascular diseases including atherosclerosis, (3) adenoviral transfer of the protein reduces atherosclerosis in apolipoprotein E-deficient mice, and (4) pretreatment of an electronegative LDL subfraction isolated from hypercholesterolemic human plasma with a recombinant platelet-activating factor acetylhydrolase completely abolishes the proapoptotic effects of the electronegative LDL on vascular endothelial cells. Additionally, treatment with the recombinant product reduced mortality from severe sepsis in a phase IIb clinical trial. In an animal study, transfection of tumor cells with platelet-activating factor acetylhydrolase inhibited tumor growth at the site of implantation. Summary Plasma platelet-activating factor acetylhydrolase becomes progressively activated as atherosclerosis progresses, but lines of evidence indicate that the enzyme possesses potent antiatherogenic and antiinflammatory properties. This raises the question of whether increased activity is a cause or a result of atherosclerosis and, consequently, whether inhibiting the enzymes activities may decelerate or accelerate the progress of the disease.


Diabetes | 2008

Electronegative LDL Impairs Vascular Endothelial Cell Integrity in Diabetes by Disrupting Fibroblast Growth Factor 2 (FGF2) Autoregulation

Jonathan Lu; Wei Jiang; Jun Hai Yang; Po Yuan Chang; Jeffrey P. Walterscheid; Hsin Hung Chen; Marco Marcelli; Daming Tang; Yuan-Teh Lee; Warren S L Liao; Chao Yuh Yang; Chu-Huang Chen

OBJECTIVE—L5, a circulating electronegative LDL identified in patients with hypercholesterolemia or type 2 diabetes, induces endothelial cell (EC) apoptosis by suppressing fibroblast growth factor (FGF)2 expression. FGF2 plays a pivotal role in endothelial regeneration and compensatory arteriogenesis. It is likely that vasculopathy and poor collateralization in diabetes is a result of FGF2 dysregulation. RESEARCH DESIGN AND METHODS—To investigate this mechanism, we isolated L5 from type 2 diabetic patients. In cultured bovine aortic ECs (BAECs), L5 inhibited FGF2 transcription and induced apoptosis. Because FGF2 stimulates the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, we examined whether FGF2 transcription is regulated by Akt through a feedback mechanism. RESULTS—Diabetic L5 reduced FGF2 release to the medium but enhanced caspase-3 activity, with resultant apoptosis. Inhibition of PI3K with wortmannin or suppression of Akt activation with dominant-negative Akt inhibited FGF2 expression. Transfection of BAECs with FGF2 antisense cDNA depleted endogenous FGF2 protein. In these cells, not only was Akt phosphorylation inhibited, but FGF2 transcription was also critically impaired. In contrast, transfecting BAECs with FGF2 sense cDNA augmented Akt phosphorylation. Treatment with constitutively active Akt enhanced FGF2 expression. Augmentation of either FGF2 transcription or Akt phosphorylation rendered BAECs resistant to L5. CONCLUSIONS—These findings suggest that FGF2 is the primary initiator of its own expression, which is autoregulated through a novel FGF2-PI3K-Akt loop. Thus, by disrupting FGF2 autoregulation in vascular ECs, L5 may impair reendothelialization and collateralization in diabetes.

Collaboration


Dive into the Chu-Huang Chen's collaboration.

Top Co-Authors

Avatar

Jonathan Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Liang-Yin Ke

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Hua-Chen Chan

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Philip D. Henry

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Sheng Chu

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan-Teh Lee

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wen-Ter Lai

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Hsiang-Chun Lee

Kaohsiung Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge