Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuan-Yu Hsu is active.

Publication


Featured researches published by Chuan-Yu Hsu.


The Plant Cell | 2006

Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering

Chuan-Yu Hsu; Yunxia Liu; Dawn S. Luthe; Cetin Yuceer

Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season. The genetic factors that control flower initiation, ending the juvenile phase, are unknown in poplar. The factors that regulate seasonal flower bud formation are also unknown. Here, we report that poplar FLOWERING LOCUS T2 (FT2), a relative of the Arabidopsis thaliana flowering-time gene FT, controls first-time and seasonal flowering in poplar. The FT2 transcript is rare during the juvenile phase of poplar. When juvenile poplar is transformed with FT2 and transcript levels are increased, flowering is induced within 1 year. During the transition between vegetative and reproductive growth in mature trees, FT2 transcripts are abundant during reproductive growth under long days. Subsequently, floral meristems emerge on flanks of the axillary inflorescence shoots. These findings suggest that FT2 is part of the flower initiation pathway in poplar and plays an additional role in regulating seasonal flower initiation that is integrated with the poplar perennial growth habit.


Journal of Experimental Botany | 2010

Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus

Huanling Zhang; David E. Harry; Cathleen Ma; Cetin Yuceer; Chuan-Yu Hsu; Vikas Vikram; Olga Shevchenko; Elizabeth Etherington; Steven H. Strauss

Expression of FLOWERING LOCUS T (FT) and its homologues has been shown to accelerate the onset of flowering in a number of plant species, including poplar (Populus spp.). The application of FT should be of particular use in forest trees, as it could greatly accelerate and enable new kinds of breeding and research. Recent evidence showing the extent to which FT is effective in promoting flowering in trees is discussed, and its effectiveness in poplar is reported. Results using one FT gene from Arabidopsis and two from poplar, all driven by a heat-inducible promoter, transformed into two poplar genotypes are also described. Substantial variation in flowering response was observed depending on the FT gene and genetic background. Heat-induced plants shorter than 30 cm failed to flower as well as taller plants. Plants exposed to daily heat treatments lasting 3 weeks tended to produce fewer abnormal flowers than those in heat treatments of shorter durations; increasing the inductive temperature from 37 degrees C to 40 degrees C produced similar benefits. Using optimal induction conditions, approximately 90% of transgenic plants could be induced to flower. When induced FT rootstocks were grafted with scions that lacked FT, flowering was only observed in rootstocks. The results suggest that a considerable amount of species- or genotype-specific adaptation will be required to develop FT into a reliable means for shortening the generation cycle for breeding in poplar.


PLOS ONE | 2012

Overexpression of Constans Homologs CO1 and CO2 Fails to Alter Normal Reproductive Onset and Fall Bud Set in Woody Perennial Poplar

Chuan-Yu Hsu; Joshua P. Adams; Kyoungok No; Haiying Liang; Richard Meilan; Olga Pechanova; Abdelali Barakat; John E. Carlson; Grier P. Page; Cetin Yuceer

CONSTANS (CO) is an important flowering-time gene in the photoperiodic flowering pathway of annual Arabidopsis thaliana in which overexpression of CO induces early flowering, whereas mutations in CO cause delayed flowering. The closest homologs of CO in woody perennial poplar (Populus spp.) are CO1 and CO2. A previous report [1] showed that the CO2/FLOWERING LOCUS T1 (FT1) regulon controls the onset of reproduction in poplar, similar to what is seen with the CO/FLOWERING LOCUS T (FT) regulon in Arabidopsis. The CO2/FT1 regulon was also reported to control fall bud set. Our long-term field observations show that overexpression of CO1 and CO2 individually or together did not alter normal reproductive onset, spring bud break, or fall dormancy in poplar, but did result in smaller trees when compared with controls. Transcripts of CO1 and CO2 were normally most abundant in the growing season and rhythmic within a day, peaking at dawn. Our manipulative experiments did not provide evidence for transcriptional regulation being affected by photoperiod, light intensity, temperature, or water stress when transcripts of CO1 and CO2 were consistently measured in the morning. A genetic network analysis using overexpressing trees, microarrays, and computation demonstrated that a majority of functionally known genes downstream of CO1 and CO2 are associated with metabolic processes, which could explain their effect on tree size. In conclusion, the function of CO1 and CO2 in poplar does not appear to overlap with that of CO from Arabidopsis, nor do our data support the involvement of CO1 and CO2 in spring bud break or fall bud set.


Journal of Experimental Botany | 2011

Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

Joshua P. Adams; Ardeshir Adeli; Chuan-Yu Hsu; Richard L. Harkess; Grier P. Page; Claude W. dePamphilis; Emily B. Schultz; Cetin Yuceer

Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.


PLOS ONE | 2016

Insight into the Salivary Gland Transcriptome of Lygus lineolaris (Palisot de Beauvois)

Kurt C. Showmaker; Andrea Bednářová; Cathy Gresham; Chuan-Yu Hsu; Daniel G. Peterson; Natraj Krishnan

The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) is a polyphagous, phytophagous insect that has emerged as a major pest of cotton, alfalfa, fruits, and vegetable crops in the eastern United States and Canada. Using its piercing-sucking mouthparts, TPB employs a “lacerate and flush” feeding strategy in which saliva injected into plant tissue degrades cell wall components and lyses cells whose contents are subsequently imbibed by the TPB. It is known that a major component of TPB saliva is the polygalacturonase enzymes that degrade the pectin in the cell walls. However, not much is known about the other components of the saliva of this important pest. In this study, we explored the salivary gland transcriptome of TPB using Illumina sequencing. After in silico conversion of RNA sequences into corresponding polypeptides, 25,767 putative proteins were discovered. Of these, 19,540 (78.83%) showed significant similarity to known proteins in the either the NCBI nr or Uniprot databases. Gene ontology (GO) terms were assigned to 7,512 proteins, and 791 proteins in the sialotranscriptome of TPB were found to collectively map to 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. A total of 3,653 Pfam domains were identified in 10,421 sialotranscriptome predicted proteins resulting in 12,814 Pfam annotations; some proteins had more than one Pfam domain. Functional annotation revealed a number of salivary gland proteins that potentially facilitate degradation of host plant tissues and mitigation of the host plant defense response. These transcripts/proteins and their potential roles in TPB establishment are described.


Plant Biotechnology Journal | 2012

Plant‐based FRET biosensor discriminates environmental zinc levels

Joshua P. Adams; Ardeshir Adeli; Chuan-Yu Hsu; Richard L. Harkess; Grier P. Page; Claude W. dePamphilis; Emily B. Schultz; Cetin Yuceer

Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in response to zinc (Zn) accumulation in plants as a proxy for environmental health. We modified a plant Zn transport protein by adding flanking fluorescent proteins (FPs) and deploying the construct into two different species. In Arabidopsis thaliana, FRET was monitored by a confocal microscope and had a 1.4-fold increase in intensity as the metal concentration increased. This led to a 16.7% overall error-rate when discriminating between a control (1μm Zn) and high (10mm Zn) treatment after 96h. The second host plant (Populus tremula×Populu salba) also had greater FRET values (1.3-fold increase) when exposed to the higher concentration of Zn, while overall error-rates were greater at 22.4%. These results indicate that as plants accumulate Zn, protein conformational changes occur in response to Zn causing differing interaction between FPs. This results in greater FRET values when exposed to greater amounts of Zn and monitored with appropriate light sources and filters. We also demonstrate how this construct can be moved into different host plants effectively including one tree species. This chimeric protein potentially offers a method for monitoring large areas of land for Zn accumulation, is transferable among species, and could be modified to monitor other specific heavy metals that pose environmental risks.


PLOS ONE | 2015

Activity-Based Proteomic Profiling of Deubiquitinating Enzymes in Salmonella-Infected Macrophages Leads to Identification of Putative Function of UCH-L5 in Inflammasome Regulation.

Evangel Kummari; Navatha Alugubelly; Chuan-Yu Hsu; Brittany Dong; Bindu Nanduri; Mariola J. Edelmann

Although protein ubiquitination has been shown to regulate multiple processes during host response to Salmonella enterica serovar Typhimurium infection, specific functions of host deubiquitinating enzymes remain unknown in this bacterial infection. By using chemical proteomics approach, in which deubiquitinating enzymes were labeled by an active-site probe and analyzed by quantitative proteomics, we identified novel deubiquitinases in chicken macrophages based on their reactivity with the probe. Also, we detected down-regulation of UCH-L3, and USP4 as well as up-regulation of USP5 and UCH-L5 deubiquitinating enzymes in macrophages infected with Salmonella Typhimurium. We showed that decrease in either UCH-L5 activity, or in UCH-L5 protein amount in chicken and human macrophages infected or stimulated with LPS/nigericin, led to decreased IL-1β release. These data point towards a putative role of UCH-L5 in inflammasome regulation during Salmonella infection. Because inflammasome activation is important in innate resistance to these bacteria, one would expect that naturally occurring or therapeutically induced alteration in UCH-L5 activation would influence disease outcome and could represent a target for new therapeutic approaches.


BMC Genomics | 2014

Transcriptomic dissection of the rice – Burkholderia glumae interaction

Zenaida V. Magbanua; Mark A. Arick; Teresia J. Buza; Chuan-Yu Hsu; Kurt C. Showmaker; Philippe Chouvarine; Peng Deng; Daniel G. Peterson; Shi-En Lu

BackgroundBacterial panicle blight caused by the bacterium Burkholderia glumae is an emerging disease of rice in the United States. Not much is known about this disease, the disease cycle or any source of disease resistance. To understand the interaction between rice and Burkholderia glumae, we used transcriptomics via next-generation sequencing (RNA-Seq) and bioinformatics to identify differentially expressed transcripts between resistant and susceptible interactions and formulate a model for rice resistance to the disease.ResultsUsing inoculated young seedlings as sample tissues, we identified unique transcripts involved with resistance to bacterial panicle blight, including a PIF-like ORF1 and verified differential expression of some selected genes using qRT-PCR. These transcripts, which include resistance genes of the NBS-LRR type, kinases, transcription factors, transporters and expressed proteins with functions that are not known, have not been reported in other pathosystems including rice blast or bacterial blight. Further, functional annotation analysis reveals enrichment of defense response and programmed cell death (biological processes); ATP and protein binding (molecular functions); and mitochondrion-related (cell component) transcripts in the resistant interaction.ConclusionTaken together, we formulated a model for rice resistance to bacterial panicle blight that involves an activation of previously unknown resistance genes and their activation partners upon challenge with B. glumae. Other interesting findings are that 1) though these resistance transcripts were up-regulated upon inoculation in the resistant interaction, some of them were already expressed in the water-inoculated control from the resistant genotype, but not in the water- and bacterium-inoculated samples from the susceptible genotype; 2) rice may have co-opted an ORF that was previously a part of a transposable element to aid in the resistance mechanism; and 3) resistance may have existed immediately prior to rice domestication.


Genome Announcements | 2014

Draft Genome Sequence of Burkholderia pyrrocinia Lyc2, a Biological Control Strain That Can Suppress Multiple Plant Microbial Pathogens

Xiaoqiang Wang; Kurt C. Showmaker; Xiao-Qing Yu; Tao Bi; Chuan-Yu Hsu; Sonya M. Baird; Daniel G. Peterson; Xiang-Dong Li; Shi-En Lu

ABSTRACT Burkholderia pyrrocinia strain Lyc2 was isolated from the tobacco rhizosphere in China. This bacterium exhibits a remarkable capacity to inhibit the growth of multiple pathogens and shows strong suppression of cotton seedling damping-off. Here, we present the draft genome sequence of Burkholderia pyrrocinia strain Lyc2.


Archive | 2018

Differential Gene Expression Analysis of Plants

Mark A. Arick; Chuan-Yu Hsu

Since the next-generation sequencing (NGS) systems were invented and introduced to life science research about a decade ago, the NGS technology has extensively utilized in wide range of genomic, transcriptomic, and evolutionary studies. Compared with other eukaryotic species, the application of NGS technology in plant research reveals some challenges in sample preparation and data analysis due to some structural and physiological characteristics and genome complexity nature in plants. Hence, despite of the standard sample preparation and data process protocols widely used in high throughput transcriptomic analysis, we also describe the modified hot borate RNA extraction protocol specific for high quality and quantity plant total RNA isolation, and some comments and suggestions to achieve better assessments in the validation of RNA and library quality and data analysis.

Collaboration


Dive into the Chuan-Yu Hsu's collaboration.

Top Co-Authors

Avatar

Cetin Yuceer

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Mark A. Arick

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Daniel G. Peterson

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Joshua P. Adams

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Ardeshir Adeli

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt C. Showmaker

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Emily B. Schultz

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Richard L. Harkess

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Shi-En Lu

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge