Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanbin Wu is active.

Publication


Featured researches published by Chuanbin Wu.


Pharmaceutical Research | 2012

Improving the Chemical Stability of Amorphous Solid Dispersion with Cocrystal Technique by Hot Melt Extrusion

Xu Liu; Ming Lu; Zhefei Guo; Lin Huang; Xin Feng; Chuanbin Wu

ABSTRACTPurposeTo explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME).MethodsCarbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ.ResultsCBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased.ConclusionsBy in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.


International Journal of Nanomedicine | 2011

Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel.

Meiwan Chen; Zhiwen Yang; Hongmei Wu; Xin Pan; Xiaobao Xie; Chuanbin Wu

Purpose The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel) on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Patients and methods This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM), and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis. Results S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA. Conclusion These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research and development in in-vivo studies.


European Journal of Pharmaceutical Sciences | 2012

Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin

Minyan Wei; Yuehong Xu; Qi Zou; Liuxiao Tu; Chenyi Tang; Ting Xu; Lihe Deng; Chuanbin Wu

A hepatocellular carcinoma targeting lactoferrin (Lf) modified PEGylated liposome system was developed for improving drug efficacies to hepatic cancer cells. In this present work, PEGylated liposomes (PLS) were successfully prepared by the thin film hydration method combined with peglipid post insertion. Lf was covalently conjugated to the distal end of DSPE-PEG2000-COOH lipid by amide bound and loaded onto PEGylated liposomes surface as the targeting ligand. To confirm the targeting efficacies to hepatic cancer, coumarin-6 and DiR were encapsulated as fluorescent probes. The confocal microscopy and flow cytometry demonstrated that Lf conjugated PEGylated liposomes (Lf-PLS) were efficiently associated by HepG2 cells, while limited interaction was found for liposomes modified with a negative control protein. A similar pharmacokinetic behavior was observed in pharmacokinetics study of the liposomal formulations. Meanwhile, the in vivo imaging of liposomes in HepG2 tumor bearing mice indicated that Lf-PLS achieved more accumulation in tumor compared with PLS without Lf conjugated. The significant in vitro and in vivo results suggested that Lf-PLS might be a promising drug delivery system for hepatocellular carcinoma therapy with low toxicity.


Biomaterials | 2011

A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection

Hongmei Wu; Shirong Pan; Mo Chen; Yang Chang Wu; Cuifeng Wang; Yuting Wen; Xiang Zeng; Chuanbin Wu

A serum tolerant polycation gene vector, G(2) PAMAM-PGlu-G(1) PAMAMs (ALA), was designed, synthesized, characterized and evaluated. A honeycomb-like molecular structure model for mechanistic explanation of ALA was postulated and discussed. Designed as a star-shaped polyamidoamine (PAMAM)-based polypeptide dendrimer through peptide bond linkages, ALA was with non-toxic low generation G(2) PAMAM (G(2)) as its central core, polyglutamate (PGlu)s as its star-shaped backbone branches and G(1) PAMAM (G(1))s as its branch grafts and peripheral terminals. IR, (1)H NMR demonstrated its successful combination. As a gene carrier, ALA exhibited good DNA binding and condensation capacity with particle size (approximately 87 nm for N/P 40, approximately 170 nm for N/P 30) and ζ-potential (approximately 16 mV for N/P 30-40), negligible cytotoxicity, exciting serum tolerant capacity and significant serum-promoted (serum-containing 56.6%>serum-free 32.7%), cell line dependent (Hek 293 > Bel 7402 > Hela), incubation period dependent (38 h > 18 h > 12 h > 9 h > 4 h > 2 h > 1 h) and sustained (peak transfection appeared at 30 h incubation) transfection efficiency. The presence of serum had not only no inhibition on, but also prominent promotion to, the transfection activity of ALA. All above features differentiated ALA clearly from most other serum-inhibitive nonviral gene carriers, and proved ALA the promising and challenging potential efficient gene vector for practical clinical application.


International Journal of Nanomedicine | 2013

Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

Linghui Dian; Zhiwen Yang; Feng Li; Zhouhua Wang; Xin Pan; Xinsheng Peng; Xintian Huang; Zhefei Guo; Guilan Quan; Xuan Shi; Bao Chen; Ge Li; Chuanbin Wu

In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P < 0.05). The ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing

Meimei Zhang; Houli Li; Bo Lang; Kevin P. O’Donnell; Haohao Zhang; Zhouhua Wang; Yixuan Dong; Chuanbin Wu; Robert O. Williams

The objective of this study was to prepare amorphous fenofibrate (FB) solid dispersions using thin film freezing (TFF) and to incorporate the solid dispersions into pharmaceutically acceptable dosage forms. FB solid dispersions prepared with optimized drug/polymer ratios were characterized by modulated differential scanning calorimetry (MDSC), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurements, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and supersaturation dissolution testing. Furthermore, a dry granulation technique was used to encapsulate the TFF compositions for in vitro dissolution and in vivo animal pharmacokinetic studies. The results showed that the TFF process produced amorphous, porous, microstructured, and stable solid dispersions with high surface areas. Development of solid oral dosage forms revealed that the performance of the FB containing solid dispersions was not affected by the formulation process, which was confirmed by DSC and XRD. Moreover, an in vivo pharmacokinetic study in rats revealed a significant increase in FB absorption compared to bulk FB. We confirmed that amorphous solid dispersions with large surface areas produced by the TFF process displayed superior dissolution rates and corresponding enhanced bioavailability of the poorly water-soluble drug, FB.


International Journal of Nanomedicine | 2012

Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica

Zhouhua Wang; Bao Chen; Guilan Quan; Feng Li; Qiaoli Wu; Linghui Dian; Yixuan Dong; Ge Li; Chuanbin Wu

Background and methods: The aim of this study was to develop an immediate-release pellet formulation with improved drug dissolution and adsorption. Carbamazepine, a poorly water-soluble drug, was adsorbed into mesoporous silica (SBA-15-CBZ) via a wetness impregnation method and then processed by extrusion/spheronization into pellets. Physicochemical characterization of the preparation was carried out by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, small-angle and wide-angle x-ray diffraction, and differential scanning calorimetry. Flowability and wettability of the drug-loaded silica powder were evaluated by bulk and tapped density and by the angle of repose and contact angle, respectively. The drug-loaded silica powder was formulated into pellets to improve flowability. Results: With maximum drug loading in SBA-15 matrices determined to be 20% wt, in vitro release studies demonstrated that the carbamazepine dissolution rate was notably improved from both the SBA-15 powder and the corresponding pellets as compared with the bulk drug. Correspondingly, the oral bioavailability of SBA-15-CBZ pellets was increased considerably by 1.57-fold in dogs (P < 0.05) compared with fast-release commercial carbamazepine tablets. Conclusion: Immediate-release carbamazepine pellets prepared from drug-loaded silica provide a feasible approach for development of a rapidly acting oral formulation for this poorly water-soluble drug and with better absorption.


Aaps Pharmscitech | 2012

Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability

Zhiwen Yang; Yinhe Tan; Meiwan Chen; Linghui Dian; Ziyun Shan; Xinsheng Peng; Chuanbin Wu

The oral administration of amphotericin B (AmB) has the major drawback of poor bioavailability. The aim of this work was to evaluate the potential of AmB-loaded cubosomes as an oral formulation with improved bioavailability. This manuscript firstly developed AmB-loaded cubosomes by using the SolEmuls technology. The encapsulation efficiency, the in vitro release, and stability studies in simulated gastrointestinal fluid were used to evaluate AmB-loaded cubosomes. The acute nephrotoxicity, bioavailability, and tissue distribution study of AmB-loaded cubosomes were assayed upon oral administration to rats. SAXS and cryo-TEM exhibited AmB-loaded cubosomes as a bicontinuous cubic liquid crystalline phase with Pn3m geometry. The encapsulation efficiency and the results of in vitro release and stability studies in simulated gastrointestinal fluid further demonstrated that AmB was successfully encapsulated in cubosomes. AmB-loaded cubosomal formulation orally administrated in rats did not show nephrotoxicity and its relative bioavailability was approximately 285% as compared to Fungizone®. The AmB-loaded cubosomal formulation presented an effective potential approach for enhancing the oral bioavailability of AmB.


International Journal of Pharmaceutics | 2014

Percutaneous delivery of econazole using microemulsion as vehicle: Formulation, evaluation and vesicle-skin interaction

Shumin Ge; Yuanyuan Lin; Haoyang Lu; Qi Li; Jian He; Bao Chen; Chuanbin Wu; Yuehong Xu

This project was carried out to exploit the feasibility of using microemulsion (ME) as an alternative carrier for percutaneous delivery econazole nitrate (ECN) and elucidate the underlying mechanism of permeation enhancement. The ME was developed based on Labrafil M 1944 Cs as oil phase, Solutol HS15 and Span 80 as surfactants, Transcutol P as cosurfactant and water as aqueous phase. The solubility of ECN was firstly determined for screening the ingredients of the system. Pseudo-ternary phase diagrams were constructed to formulate ME and select surfactant and cosurfactant. Central composite design-response surface methodology (CCD-RSM) was utilized to optimize the formulation of ME. The ECN loaded ME was characterized in terms of morphology, particle size and size distribution, pH value, refractive index, viscosity and conductivity, and storage stability of the ECN loaded ME was assayed. Percutaneous permeation of ECN from ME in vitro through rat skin was investigated in comparison with PBS aqueous suspension (1%, w/w), and results showed that ME enhanced drug retention in the skin and permeation through the skin, the enhancement of ME on skin deposition was further visualized through fluorescent-labeled ME by confocal laser scanning microscope (CLSM). The action mechanism of ME on improving percutaneous delivery was studied by performing a pretreatment test. It can speculate that ME does not simply behave as enhancer but it also acts as drug carrier. Furthermore, ME-skin interaction was elucidated through transmission electron microscope (TEM), and attenuated total reflectance fourier-transform infrared (ATR-FTIR). TEM was performed to visualize the micro morphological change of skin. ATR-FTIR was carried out to investigate the molecular vibrations of the components of stratum corneum (SC). The results indicate that the ME system may be a promising vehicle for percutaneous delivery of ECN.


European Journal of Pharmaceutical Sciences | 2014

Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection

Qi Li; Zhanrong Li; Weidong Zeng; Shumin Ge; Haoyang Lu; Chuanbin Wu; Li Ge; Dan Liang; Yuehong Xu

The objective of this study was to develop proniosome-derived niosomes for topical ophthalmic delivery of Tacrolimus (FK506). The FK506 loaded proniosomes containing poloxamer 188 and lecithin as surfactants, cholesterol as a stabilizer, and minimal amount of ethanol and trace water reconstituted to niosomes prior to use. The stability of FK506 loaded proniosomes was assessed, and the morphology, size, zeta potential, surface tension, and entrapment efficiency of the derived niosomes were characterized, indicating they were feasible for instillation in the eyes. The in vitro permeation of FK506 through the freshly excised rabbit cornea, the cumulative permeation amount of FK506 from niosomes, and the drug retention in the cornea all exhibited significant increase as compared to 0.1% FK506 commercial ointments. The in vivo ocular irritation test of 0.1% FK506 loaded niosomes instilled 4 times per day in rat eyes for 21 consecutive days showed no irritation and good biocompatibility with cornea. The in vivo anti-allograft rejection assessment was performed in a Sprague-Dawley (SD) rat corneal xenotransplantation model. The results showed treatment with 0.1% FK506 loaded niosomes delayed the occurrence of corneal allograft rejection and significantly prolonged the median survival time of corneal allografts to13.86±0.80days as compared with those treated with 1% Cyclosporine (CsA) eye drops, drug-free niosomes, or untreated. In conclusion, the proniosome-derived niosomes may be a promising vehicle for effective ocular drug delivery of FK506.

Collaboration


Dive into the Chuanbin Wu's collaboration.

Top Co-Authors

Avatar

Xin Pan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ying Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Guilan Quan

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ge Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yuehong Xu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chune Zhu

Guangdong University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bao Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge