Chuandong Wang
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chuandong Wang.
Biomaterials | 2012
Shengnan Xiang; Jing Su; Haijun Tong; Fei Yang; Wenxue Tong; Weien Yuan; Fei Wu; Chuandong Wang; Tuo Jin; Kerong Dai; Xiaoling Zhang
Cytoxicity is an essential concern for polyethyleneimine 25 kDa (PEI 25 kDa), a widely reported, highly effective transfection agent used in gene delivery. In our recent experiments, Small molecular weight cross-linked poly(ethylene imine) by biscarbamate linkage (PEI-Bu) (Mn: 3278, Mw: 4289) can reduce target cell apoptosis induced by polycationic transfection, and has almost the same DNA condensation capability as PEI 25 kDa. PEI-Bu showed significantly higher activity and lower cytotoxicity than PEI 25 kDa in transfecting the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) gene to rat synoviocytes, an optimal target for arthritis treatment. The expression of IL-1Ra in synoviocytes then suppresses the expression of metalloproteases 13 (MMP13) gene, which is responsible for cartilage destruction regulated by IL-1β in arthritis. In conclusion, PEI-Bu is a promising tool for delivering IL-1Ra gene to synoviocytes for arthritis therapy.
PLOS ONE | 2013
Ze H Tang; Youtao Xie; Fei Yang; Yan Huang; Chuandong Wang; Kerong Dai; Xuebin Zheng; Xiaoling Zhang
Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.
Journal of International Medical Research | 2011
Chengxing Shen; Siguo Hao; Chuxian Zhao; Jianyi Zhu; Chuandong Wang
Exosomes are a family of bioactive vesicles and play important roles in antigen presentation. A recent phase I clinical trial with an exosome vaccine derived from colorectal cancer has shown minor clinical benefit. Exosomes derived from leukaemia cell lines have been little studied so, in the present study, the immunoprotective effect of exosomes secreted by NB4 cells, a human acute promyelocytic leukaemia cell line, was investigated. NB4-derived exosomes expressed the proteins retinoic acid receptor a and interstitial cell adhesion molecule 1 and contained heat shock protein 70, as demonstrated by transmission electron microscopy and Western blotting. Cytotoxicity assay demonstrated that cytotoxic T lymphocytes (CTLs) induced by dendritic cells (DCs) pulsed with exosomes were significantly more effective in killing target NB4 cells than CTLs induced by DCs alone. Exosome-based vaccines may be a promising means of prolonging disease-free survival in acute promyelocytic leukaemia patients after induction therapy.
Cell Death and Disease | 2016
Chuandong Wang; Jing Wang; Jiao Li; Guoli Hu; Shengzhou Shan; Qingfeng Li; Xiaoling Zhang
Bone morphogenetic protein 2 (BMP2) has been used to induce bone regeneration by promoting osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs). However, its effect is attenuated in osteoporotic conditions by unknown mechanisms. In this study, we investigated the molecular mechanisms of reduced osteogenic effect of BMP2 in osteoporotic conditions. By interrogating the microarray data from osteoporosis patients, we revealed an upregulation of the epigenetic modifying protein lysine (K)-specific demethylase 5A (KDM5A) and decreased Runt-related transcription factor 2 (RUNX2) expression. Further studies were focused on the role of KDM5A in osteoporosis. We first established ovariectomized (OVX) mouse model and found that the BMP2-induced osteogenic differentiation of osteoporotic MSCs was impaired. The elevated level of KDM5A was confirmed in osteoporotic MSCs. Overexpression of KDM5A in normal MSCs inhibited BMP2-induced osteogenesis. Moreover, osteogenic differentiation of osteoporotic MSCs was restored by specific KDM5A short hairpin RNA or inhibitor. Furthermore, by chromatin immunoprecipitation assay we demonstrated that KDM5A functions as endogenous modulator of osteogenic differentiation by decreasing H3K4me3 levels on promoters of Runx2, depend on its histone methylation activity. More importantly, we found an inhibitory role of KDM5A in regulating bone formation in osteoporotic mice, and pretreatment with KDM5A inhibitor partly rescued the bone loss during osteoporosis. Our results show, for the first time, that KDM5A-mediated H3K4me3 modification participated in the etiology of osteoporosis and may provide new strategies to improve the clinical efficacy of BMP2 in osteoporotic conditions.
Cell Death and Disease | 2016
Jian Xun Wang; Chuandong Wang; N Zhang; W X Tong; Yong Zhang; Shengzhou Shan; Xiaoling Zhang; Qingfeng Li
Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation.
Journal of Cellular Biochemistry | 2017
Chenglong Wang; Fei Xiao; Chuandong Wang; Jun-Feng Zhu; Chao Shen; Bin Zuo; Hui Wang; De Li; X. Wang; Wei‐Jia Feng; Zhuokai Li; Guoli Hu; Xiaoling Zhang; Xiaodong Chen
Osteoblasts are essential for maintaining skeletal architecture and modulating bone microenvironment homeostasis. From numerous associated investigations, the BMP‐2 pathway has been well‐defined as a vital positive modulator of bone homeostasis. Gremlin2 (Grem2) is a bone morphogenetic protein (BMP) antagonists. However, the effect of Grem2 on the BMP‐2‐induced osteogenesis of human bone marrow‐derived mesenchymal stem cells (hBMSCs) remains ambiguous. This study aimed to analyze the procedure in vitro and in vivo. The differentiation of hBMSCs was assessed by determining the expression levels of several osteoblastic genes, as well as the enzymatic activity and calcification of alkaline phosphatase. We found that Grem2 expression was upregulated by BMP‐2 within the range of 0–1 μg/mL, and significant increases were evident at 48, 72, and 96 h after BMP‐2 treatment. Si‐Grem2 increased the BMP‐2‐induced osteogenic differentiation of hBMSCs, whereas overexpression of Grem2 had the opposite trend. The result was confirmed using a defective femur model. We also discovered that the BMP‐2/Smad/Runx2 pathway played an important role in the process. This study showed that si‐Grem2 increased the BMP‐2‐induced osteogenic differentiation of hBMSCs via the BMP‐2/Smad/Runx2 pathway. J. Cell. Biochem. 118: 286–297, 2017.
Experimental Cell Research | 2017
Chuandong Wang; Shengzhou Shan; Chenglong Wang; Jing Wang; Jiao Li; Guoli Hu; Kerong Dai; Qingfeng Li; Xiaoling Zhang
ABSTRACT Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down‐regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading. Graphical abstract Figure. No Caption available. HighlightsSonic hedgehog signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs.Mechanical stimulation down‐regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression.The inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading.
Cell Death and Disease | 2017
Yiyun Wang; Jiajia Xu; Xudong Zhang; Chuandong Wang; Yan Huang; Kerong Dai; Xiaoling Zhang
The incomplete understanding of aberrant neovascularization, which contributes to osteoarthritis suggests that additional modulators have yet to be identified. Our objective was to identify the role of Leucine-rich-alpha-2-glycoprotein1 (LRG1), a new regulator of pathogenic angiogenesis, in osteoarthritis progression and to develop effective treatment strategies. In this study, immunohistochemistry showed that LRG1 was increased in the subchondral bone and articular cartilage in anterior cruciate ligament transection (ACLT) mice. Further studies were focused on the role of LRG1 in osteoarthritis. Results showed that LRG1 promoted angiogenesis and mesenchymal stem cells (MSC) migration, which contribute to aberrant bone formation in the subchondral bone. Moreover, tumor necrosis factor-α (TNF-α), not interleukin-1β (IL-1β), IL-6 or IL-17, induced the LRG1 expression in human umbilical vein endothelial cells and this effect was inhibited by p38 mitogen-activated protein kinase or NF-κB inhibitor. Notably, inhibition of TNF-α and LRG1 activity by Lenalidomide, an inhibitor of TNF-α production, in ACLT mice attenuated degeneration of osteoarthritis articular cartilage. This study shows that TNF-α is the predominant proinflammatory cytokine that induces the secretion of LRG1. LRG1 contributes to angiogenesis-coupled de novo bone formation by increasing angiogenesis and recruiting MSCs in the subchondral bone of osteoarthritis joints. Inhibition of TNF-α and LRG1 by Lenalidomide could be a potential therapeutic approach.
Cell Death and Disease | 2017
Xudong Zhang; Chuandong Wang; Jingyu Zhao; Jiajia Xu; Yiyun Geng; Liming Dai; Yan Huang; Sai-Chuen Fu; Kerong Dai; Xiaoling Zhang
Osteoarthritis (OA), characterized by insufficient extracellular matrix synthesis and cartilage degeneration, is known as an incurable disease because its pathogenesis is poorly elucidated. Thus far, limited information is available regarding the pathophysiological role of microRNAs (miRNAs) in OA. In this study, we investigated the specific function of miR-146a in OA pathophysiology using mouse OA models. We found that the articular cartilage degeneration of miR-146a knockout (KO) mice was alleviated compared with that of the wild-type (WT) mice in spontaneous and instability-induced OA models. We demonstrate that miR-146a aggravated pro-inflammatory cytokines induced suppressing the expression of cartilage matrix-associated genes. We further identified calcium/calmodulin-dependent protein kinase II delta (Camk2d) and protein phosphatase 3, regulatory subunit B, beta isoform (Ppp3r2, also known as calcineurin B, type II) were essential targets of miR-146a in regulating cartilage homeostasis. Moreover, we found that surgical-induced OA mice treated with a miR-146a inhibitor significantly alleviated the destruction of articular cartilage via targeting Camk2d and Ppp3r2. These results suggested that miR-146a has a crucial role in maintaining cartilage homeostasis. MiR-146a inhibition in chondrocytes can be a potential therapeutic strategy to ameliorate OA.
Cell Death and Disease | 2017
Guoli Hu; Xiaoying Zhao; Chuandong Wang; Yiyun Geng; Jingyu Zhao; Jiajia Xu; Bin Zuo; Chen Zhao; Chenglong Wang; Xiaoling Zhang
Cartilage dyshomeostasis contributes to osteoarthritis (OA) pathogenesis, and tumor necrosis factor (TNF)-α has critical role in this process by driving inflammatory cascades and cartilage degradation. However, the negative regulation of TNF-α-mediated signaling remains undefined. Here we demonstrate the crucial role of miR-145 in the modulation of TNF-α-mediated signaling and cartilage matrix degradation. MicroRNA (miRNA) expression profiles of TNF-α-stimulated chondrocytes showed that miR-145 expression was rapidly downregulated by TNF-α. Moreover, miR-145 was directly repressed by p65 and was negatively correlated with TNF-α secretion during OA progression. Further, we found that miR-145 directly targeted mitogen-activated protein kinase kinase 4 (MKK4) and broadly restrained the production of several TNF-α-triggered matrix-degrading enzymes (MMP-3, MMP-13, and Adamts-5). Mechanistic studies unveiled that miR-145 negatively regulated TNF-α-mediated JNK and p38 activation, as well as the nuclear accumulation of p-c-Jun and p-ATF2, by inhibiting MKK4 phosphorylation, eventually resulting in the alteration of catabolic genes transcription. Indeed, p-ATF2 interacted with the promoter of Mmp-13, whereas p-c-Jun bound to promoters of Mmp-3 and Adamts-5. MKK4 was significantly elevated in OA cartilage. Eliminating MKK4 by short hairpin RNA resulted in obviously decreased matrix-degrading enzymes production, JNK and p38 inactivation, and an inhibition of cartilage degradation. On the contrary, MKK4 overexpression enhanced TNF-α-mediated signaling activation and transcription of downstream catabolic genes, and consequently worsened cartilage degradation. Moreover, intra-articular (IA) injection of miR-145 agonist to rat with surgery-induced OA alleviated cartilage destruction. Altogether, we elucidate a novel regulatory mechanism underlying TNF-α-triggered cartilage degradation and demonstrate the potential utility of miR-145 and MKK4 as therapy targets for OA.