Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanfu Zhang is active.

Publication


Featured researches published by Chuanfu Zhang.


PLOS ONE | 2013

Higher Isolation of NDM-1 Producing Acinetobacter baumannii from the Sewage of the Hospitals in Beijing

Chuanfu Zhang; Shaofu Qiu; Yong Wang; Lihua Qi; Rongzhang Hao; Xuelin Liu; Yun Shi; Xiaofeng Hu; Daizhi An; Zhenjun Li; Peng Li; Ligui Wang; Jiajun Cui; Pan Wang; Liuyu Huang; John D. Klena; Hongbin Song

Multidrug resistant microbes present in the environment are a potential public health risk. In this study, we investigate the presence of New Delhi metallo-β-lactamase 1 (NDM-1) producing bacteria in the 99 water samples in Beijing City, including river water, treated drinking water, raw water samples from the pools and sewage from 4 comprehensive hospitals. For the bla NDM-1 positive isolate, antimicrobial susceptibility testing was further analyzed, and Pulsed Field Gel Electrophoresis (PFGE) was performed to determine the genetic relationship among the NDM-1 producing isolates from sewage and human, as well as the clinical strains without NDM-1. The results indicate that there was a higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals, while no NDM-1 producing isolates were recovered from samples obtained from the river, drinking, or fishpond water. Surprisingly, these isolates were markedly different from the clinical isolates in drug resistance and pulsed field gel electrophoresis profiles, suggesting different evolutionary relationships. Our results showed that the hospital sewage may be one of the diffusion reservoirs of NDM-1 producing bacteria.


Frontiers in Microbiology | 2016

Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii

Lihua Qi; Hao Li; Chuanfu Zhang; Beibei Liang; Jie Li; Ligui Wang; Xinying Du; Xuelin Liu; Shaofu Qiu; Hongbin Song

In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010–2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the isolates. Further explorations genetically would improve our understanding of these processes and provide novel insights in the therapeutics and prevention against A. baumannii biofilm-related infections.


Virology Journal | 2010

Highly pathogenic avian influenza A virus H5N1 NS1 protein induces caspase-dependent apoptosis in human alveolar basal epithelial cells.

Chuanfu Zhang; Yutao Yang; Xiaowei Zhou; Xuelin Liu; Hongbin Song; Yuxian He; Peitang Huang

BackgroundIt is widely considered that the multifunctional NS1 protein of influenza A viruses contributes significantly disease pathogenesis by modulating a number of virus and host-cell processes, but it is highly controversial whether this non-structural protein is a proapoptotic or antiapoptotic factor in infected cells.ResultsNS1 protein of influenza A/chicken/Jilin/2003 virus, a highly pathogenic H5N1 strain, could induce apoptosis in the carcinomic human alveolar basal epithelial cells (A549) by electron microscopic and flow cytometric analyses. NS1 protein-triggered apoptosis in A549 cells is via caspase-dependent pathway.ConclusionsInfluenza A virus NS1 protein serves as a strong inducer of apoptosis in infected human respiratory epithelial cells and plays a critical role in disease pathogenesis.


Cellular and Molecular Life Sciences | 2011

FBI-1 functions as a novel AR co-repressor in prostate cancer cells.

Jiajun Cui; Yutao Yang; Chuanfu Zhang; Pinliang Hu; Wei Kan; Xianhong Bai; Xuelin Liu; Hongbin Song

The pro-oncogene FBI-1, encoded by Zbtb7a, is a transcriptional repressor that belongs to the POK (POZ/BTB and Krüppel) protein family. In this study, we investigated a potential interaction between androgen receptor (AR) signaling and FBI-1 and demonstrated that overexpression of FBI-1 inhibited ligand-dependent AR activation. A protein–protein interaction was identified between FBI-1 and AR in a ligand-dependent manner. Furthermore, FBI-1, AR and SMRT formed a ternary complex and FBI-1 enhanced the recruitment of NCoR and SMRT to endogenous PSA upstream sequences. Our data also indicated that the FBI-1-mediated inhibition of AR transcriptional activity is partially dependent on HDAC. Interestingly, FBI-1 plays distinct roles in regulating LNCaP (androgen-dependent) and PC-3 cell (androgen-independent) proliferation.


Cellular Signalling | 2013

LINE-1 ORF-1p functions as a novel androgen receptor co-activator and promotes the growth of human prostatic carcinoma cells

Yinying Lu; Fan Feng; Yutao Yang; Xudong Gao; Jiajun Cui; Chuanfu Zhang; Fan Zhang; Zhongxian Xu; Jianhui Qv; Chunping Wang; Zhen Zeng; Yunfeng Zhu; Yongping Yang

Widespread interest in the mechanism of transcriptional regulation by the androgen receptor (AR) has been stimulated by the finding that AR signaling is critically important in the progression of human prostate cancers. Co-factors, the co-repressors, or the co-activators are responsible for the regulation of AR activation. The pro-oncogene human Long Interspersed Nucleotide acid Element-1 (LINE-1) encodes LINE-1 ORF-1p and plays important roles in the development and progression of several human carcinomas. In this study, the results showed that LINE-1 ORF-1p increased the AR transcriptional activity and in turn enhanced the expression of prostate specific antigen (PSA) in the presence of R1881. A physical protein-protein interaction between the AR signaling and the LINE-1 ORF-1p was identified by the immunoprecipitation assays and GST pull-down assays. Furthermore, LINE-1 ORF-1p would function as a novel AR positive co-regulator through modulating its cytoplasm/nucleus translocation and the recruitment to the androgen response element in the PSA gene promoter. Our date also showed that the LINE-1 ORF-1p promoted the proliferation and anchor-independent growth of LNCaP (ligand dependent) and PC-3 (ligand independent) human prostatic carcinoma cells. By investigating a novel role of the LINE-1 ORF-1p in the androgen/androgen receptor signaling pathway regulation, our study identifies that LINE-1 ORF-1p may be a novel AR co-regulator and molecular target for human prostate carcinoma therapy.


Virology Journal | 2011

The NS1 protein of influenza a virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: Implication for virus-induced apoptosis

Chuanfu Zhang; Yutao Yang; Xiaowei Zhou; Zhixin Yang; Xuelin Liu; Zhiliang Cao; Hongbin Song; Yuxian He; Peitang Huang

BackgroundOur previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.ResultsTo characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.ConclusionsThe present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.


PLOS ONE | 2013

MicroRNA expression profile of mouse lung infected with 2009 pandemic H1N1 influenza virus.

Zhihao Wu; Rongzhang Hao; Peng Li; Xiaoai Zhang; Nan Liu; Shaofu Qiu; Ligui Wang; Yong Wang; Wenzhong Xue; Kun Liu; Guang Yang; Jiajun Cui; Chuanfu Zhang; Hongbin Song

MicroRNAs have been implicated in the regulation of gene expression of various biological processes in a post-transcriptional manner under physiological and pathological conditions including host responses to viral infections. The 2009 pandemic H1N1 influenza virus is an emerging reassortant strain of swine, human and bird influenza virus that can cause mild to severe illness and even death. To further understand the molecular pathogenesis of the 2009 pandemic H1N1 influenza virus, we profiled cellular microRNAs of lungs from BALB/c mice infected with wild-type 2009 pandemic influenza virus A/Beijing/501/2009 (H1N1) (hereafter referred to as BJ501) and mouse-adapted influenza virus A/Puerto Rico/8/1934 (H1N1) (hereafter referred to as PR8) for comparison. Microarray analysis showed both the influenza virus BJ501 and PR8 infection induced strain- and temporal-specific microRNA expression patterns and that their infection caused a group of common and distinct differentially expressed microRNAs. Characteristically, more differentially expressed microRNAs were aroused on day 5 post infection than on day 2 and more up-regulated differentially expressed microRNAs were provoked than the down-regulated for both strains of influenza virus. Finally, 47 differentially expressed microRNAs were obtained for the infection of both strains of H1N1 influenza virus with 29 for influenza virus BJ501 and 43 for PR8. Among them, 15 microRNAs had no reported function, while 32 including miR-155 and miR-233 are known to play important roles in cancer, immunity and antiviral activity. Pathway enrichment analyses of the predicted targets revealed that the transforming growth factor-β (TGF-β) signaling pathway was the key cellular pathway associated with the differentially expressed miRNAs during influenza virus PR8 or BJ501 infection. To our knowledge, this is the first report of microRNA expression profiles of the 2009 pandemic H1N1 influenza virus in a mouse model, and our findings might offer novel therapy targets for influenza virus infection.


Virology Journal | 2010

A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement.

Leili Jia; Yuanyong Xu; Chuanfu Zhang; Yong Wang; Huihui Chong; Shaofu Qiu; Ligui Wang; Yanwei Zhong; Weijing Liu; Yansong Sun; Fei Qiao; Stephen Tomlinson; Hongbin Song; Yusen Zhou; Yuxian He

BackgroundThe complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation.Presentation of the hypothesisOur previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV.Testing the hypothesisOur hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 × anti-C3d)-Fc lysis of HIV compared to untreated virus.Implications of the hypothesisThe targeted complement activator, (anti-gp120 × anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells.


World Journal of Gastroenterology | 2013

Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma.

Fan Feng; Yinying Lu; Fan Zhang; Xudong Gao; Chuanfu Zhang; Alex Meredith; Zhongxian Xu; Yutao Yang; Xiujuan Chang; Hong Wang; Jianhui Qu; Zhen Zeng; Jun-Lan Yang; Chunping Wang; Yunfeng Zhu; Jiajun Cui; Yongping Yang

AIM To clarify the specific roles and mechanisms of long interspersed nuclear element-1 ORF-1 protein [human long interspersed nuclear element-1 (LINE-1), ORF-1p] in chemotherapeutic drug resistance and cell proliferation regulation in hepatocellular carcinoma (HCC) cells. METHODS MTT assays were performed to identify the effect of the chemotherapeutic drug toxicity on HepG2 cells. Cell proliferation inhibition and the IC50 were calculated by the Origin 8.0 software. Western blotting assays were performed to investigate whether LINE-1 ORF-1p modulates the expression of some important genes, including p53, p27, p15, Bcl-2, mdr, and p-gp. To corroborate the proliferation and anchor-independent growth results, the HepG2 cells were analyzed by flow cytometry to investigate the effect of LINE-1 ORF-1p on the apoptosis regulation. RESULTS LINE-1 ORF-1p contributed to the resistance to several chemotherapeutic drugs (cisplatin and epirubicin) in HepG2 cells. The IC50 of the epirubicin and cisplatin increased from 36.04 nmol/L to 59.11 nmol/L or from 37.94 nmol/L to 119.32 nmol/L. Repression of LINE-1 ORF-1p expression by the siRNA could markedly enhance the response of HepG2 cells to the epirubicin and cisplatin. The IC50 correspondingly decreased from 28.06 nmol/L to 3.83 nmol/L or from 32.04 nmol/L to 2.89 nmol/L. Interestingly, down-regulation of LINE-1 ORF-1p level by siRNA could promote the response of HepG2 cells to the paclitaxel. The IC50 decreased from 35.90 nmol/L to 7.36 nmol/L. However, overexpression of LINE-1 ORF-1p did not modulate the paclitaxel toxicity in HepG2 cells. Further Western blotting revealed that LINE-1 ORF-1p enhanced mdr and p-gp gene expression. As a protein arrested in the nucleus, LINE-1 ORF-1p may function through modulating transcriptional activity of some important transcription factors. Indeed, LINE-1 ORF-1p promoted HepG2 cell proliferation, anchor-independent growth and protected the cells against apoptosis through modulating the expression of p15, p21, p53, and Bcl-2 genes. CONCLUSION LINE-1 ORF-1p promotes HepG2 cell proliferation and plays an important role in the resistance of chemotherapeutic drugs. By establishing novel roles and defining the mechanisms of LINE-1 ORF-1p in HCC chemotherapeutic drug resistance and cell proliferation regulation, this study indicates that LINE-1 ORF-1p is a potential target for overcoming HCC chemotherapeutic resistance.


Virology Journal | 2011

The interaction between the PARP10 protein and the NS1 protein of H5N1 AIV and its effect on virus replication.

Mengbin Yu; Chuanfu Zhang; Yutao Yang; Zhixin Yang; Lixia Zhao; Long Xu; Rong Wang; Xiaowei Zhou; Peitang Huang

BackgroundDuring the process that AIV infect hosts, the NS1 protein can act on hosts, change corresponding signal pathways, promote the translation of virus proteins and result in virus replication.ResultsIn our study, we found that PARP domain and Glu-rich region of PARP10 interacted with NS1, and the presence of NS1 could induce PARP10 migrate from cytoplasm to nucleus. NS1 high expression could reduce the endogenous PARP10 expression. Cell cycle analysis showed that with inhibited PARP10 expression, NS1 could induce cell arrest in G2-M stage, and the percentage of cells in G2-M stage rise from the previous 10%-45%, consistent with the cell proliferation result. Plague forming unit measurement showed that inhibited PARP10 expression could help virus replication.ConclusionsIn a word, our results showed that NS1 acts on host cells and PARP10 plays a regulating role in virus replication.

Collaboration


Dive into the Chuanfu Zhang's collaboration.

Top Co-Authors

Avatar

Hongbin Song

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Leili Jia

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuelin Liu

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yutao Yang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Yansong Sun

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuanyong Xu

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ligui Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Liuyu Huang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shaofu Qiu

Academy of Military Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge