Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuang Tan is active.

Publication


Featured researches published by Chuang Tan.


Nature | 2010

Dynamics and mechanism of repair of ultraviolet-induced (6–4) photoproduct by photolyase

Jiang Li; Zheyun Liu; Chuang Tan; Xunmin Guo; Lijuan Wang; Aziz Sancar; Dongping Zhong

One of the detrimental effects of ultraviolet radiation on DNA is the formation of the (6–4) photoproduct, 6–4PP, between two adjacent pyrimidine rings. This lesion interferes with replication and transcription, and may result in mutation and cell death. In many organisms, a flavoenzyme called photolyase uses blue light energy to repair the 6–4PP (ref. 3). The molecular mechanism of the repair reaction is poorly understood. Here, we use ultrafast spectroscopy to show that the key step in the repair photocycle is a cyclic proton transfer between the enzyme and the substrate. By femtosecond synchronization of the enzymatic dynamics with the repair function, we followed the function evolution and observed direct electron transfer from the excited flavin cofactor to the 6–4PP in 225 picoseconds, but surprisingly fast back electron transfer in 50 picoseconds without repair. We found that the catalytic proton transfer between a histidine residue in the active site and the 6–4PP, induced by the initial photoinduced electron transfer from the excited flavin cofactor to 6–4PP, occurs in 425 picoseconds and leads to 6–4PP repair in tens of nanoseconds. These key dynamics define the repair photocycle and explain the underlying molecular mechanism of the enzyme’s modest efficiency.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase

Zheyun Liu; Chuang Tan; Xunmin Guo; Ya Ting Kao; Jiang Li; Lijuan Wang; Aziz Sancar; Dongping Zhong

Photolyase uses blue light to restore the major ultraviolet (UV)-induced DNA damage, the cyclobutane pyrimidine dimer (CPD), to two normal bases by splitting the cyclobutane ring. Our earlier studies showed that the overall repair is completed in 700 ps through a cyclic electron-transfer radical mechanism. However, the two fundamental processes, electron-tunneling pathways and cyclobutane ring splitting, were not resolved. Here, we use ultrafast UV absorption spectroscopy to show that the CPD splits in two sequential steps within 90 ps and the electron tunnels between the cofactor and substrate through a remarkable route with an intervening adenine. Site-directed mutagenesis reveals that the active-site residues are critical to achieving high repair efficiency, a unique electrostatic environment to optimize the redox potentials and local flexibility, and thus balance all catalytic reactions to maximize enzyme activity. These key findings reveal the complete spatio-temporal molecular picture of CPD repair by photolyase and elucidate the underlying molecular mechanism of the enzyme’s high repair efficiency.


Journal of the American Chemical Society | 2008

Ultrafast Dynamics and Anionic Active States of the Flavin Cofactor in Cryptochrome and Photolyase

Ya Ting Kao; Chuang Tan; Sang Hun Song; Nuri Ozturk; Jiang Li; Lijuan Wang; Aziz Sancar; Dongping Zhong

We report here our systematic studies of the dynamics of four redox states of the flavin cofactor in both photolyases and insect type 1 cryptochromes. With femtosecond resolution, we observed ultrafast photoreduction of oxidized state flavin adenine dinucleotide (FAD) in subpicosecond and of neutral radical semiquinone (FADH(*)) in tens of picoseconds through intraprotein electron transfer mainly with a neighboring conserved tryptophan triad. Such ultrafast dynamics make these forms of flavin unlikely to be the functional states of the photolyase/cryptochrome family. In contrast, we find that upon excitation the anionic semiquinone (FAD(*-)) and hydroquinone (FADH(-)) have longer lifetimes that are compatible with high-efficiency intermolecular electron transfer reactions. In photolyases, the excited active state (FADH(-)*) has a long (nanosecond) lifetime optimal for DNA-repair function. In insect type 1 cryptochromes known to be blue-light photoreceptors the excited active form (FAD(*-)*) has complex deactivation dynamics on the time scale from a few to hundreds of picoseconds, which is believed to occur through conical intersection(s) with a flexible bending motion to modulate the functional channel. These unique properties of anionic flavins suggest a universal mechanism of electron transfer for the initial functional steps of the photolyase/cryptochrome blue-light photoreceptor family.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ultrafast solvation dynamics at binding and active sites of photolyases

Chih Wei Chang; Lijun Guo; Ya Ting Kao; Jiang Li; Chuang Tan; Tanping Li; Chaitanya Saxena; Zheyun Liu; Lijuan Wang; Aziz Sancar; Dongping Zhong

Dynamic solvation at binding and active sites is critical to protein recognition and enzyme catalysis. We report here the complete characterization of ultrafast solvation dynamics at the recognition site of photoantenna molecule and at the active site of cofactor/substrate in enzyme photolyase by examining femtosecond-resolved fluorescence dynamics and the entire emission spectra. With direct use of intrinsic antenna and cofactor chromophores, we observed the local environment relaxation on the time scales from a few picoseconds to nearly a nanosecond. Unlike conventional solvation where the Stokes shift is apparent, we observed obvious spectral shape changes with the minor, small, and large spectral shifts in three function sites. These emission profile changes directly reflect the modulation of chromophore’s excited states by locally constrained protein and trapped-water collective motions. Such heterogeneous dynamics continuously tune local configurations to optimize photolyase’s function through resonance energy transfer from the antenna to the cofactor for energy efficiency and then electron transfer between the cofactor and the substrate for repair of damaged DNA. Such unusual solvation and synergetic dynamics should be general in function sites of proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction

Xu Li; Qin Wang; Xuhong Yu; Hongtao Liu; Huan Yang; Chenxi Zhao; Xuanming Liu; Chuang Tan; John Klejnot; Dongping Zhong; Chentao Lin

Cryptochromes are blue-light receptors mediating various light responses in plants and animals. The photochemical mechanism of cryptochromes is not well understood. It has been proposed that photoactivation of cryptochromes involves the blue-light–dependent photoreduction of flavin adenine dinucleotide via the electron transport chain composed of three evolutionarily conserved tryptophan residues known as the “trp triad.” We investigated this hypothesis by analyzing the photochemical and physiological activities of Arabidopsis cryptochrome 2 (CRY2) mutations altered in each of the three trp-triad residues. We found that all trp-triad mutations of CRY2 tested lost photoreduction activity in vitro but retained the physiological and biochemical activities in vivo. Some of the trp-triad mutations of CRY2 remained responsive to blue light; others, such as CRY2W374A, became constitutively active. In contrast to wild-type CRY2, which undergoes blue-light–dependent interaction with the CRY2-signaling proteins SUPPRESSOR OF PHYA 1 (SPA1) and cryptochrome-interaction basic helix–loop–helix 1 (CIB1), the constitutively active CRY2W374A interacts with SPA1 and CIB1 constitutively. These results support the hypothesis that cryptochromes mediate blue-light responses via a photochemistry distinct from trp-triad–dependent photoreduction and that the trp-triad residues are evolutionarily conserved in the photolyase/cryptochrome superfamily for reasons of structural integrity rather than for photochemistry per se.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Determining complete electron flow in the cofactor photoreduction of oxidized photolyase

Zheyun Liu; Chuang Tan; Xunmin Guo; Jiang Li; Lijuan Wang; Aziz Sancar; Dongping Zhong

The flavin cofactor in photoenzyme photolyase and photoreceptor cryptochrome may exist in an oxidized state and should be converted into reduced state(s) for biological functions. Such redox changes can be efficiently achieved by photoinduced electron transfer (ET) through a series of aromatic residues in the enzyme. Here, we report our complete characterization of photoreduction dynamics of photolyase with femtosecond resolution. With various site-directed mutations, we identified all possible electron donors in the enzyme and determined their ET timescales. The excited cofactor behaves as an electron sink to draw electron flow from a series of encircling aromatic molecules in three distinct layers from the active site in the center to the protein surface. The dominant electron flow follows the conserved tryptophan triad in a hopping pathway across the layers with multiple tunneling steps. These ET dynamics occur ultrafast in less than 150 ps and are strongly coupled with local protein and solvent relaxations. The reverse electron flow from the flavin is slow and in the nanosecond range to ensure high reduction efficiency. With 12 experimentally determined elementary ET steps and 6 ET reaction pairs, the enzyme exhibits a distinct reduction–potential gradient along the same aromatic residues with favorable reorganization energies to drive a highly unidirectional electron flow toward the active-site center from the protein surface.


Journal of the American Chemical Society | 2012

Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase

Zheyun Liu; Xunmin Guo; Chuang Tan; Jiang Li; Ya Ting Kao; Lijuan Wang; Aziz Sancar; Dongping Zhong

Electron tunneling pathways in enzymes are critical to their catalytic efficiency. Through electron tunneling, photolyase, a photoenzyme, splits UV-induced cyclobutane pyrimidine dimer into two normal bases. Here, we report our systematic characterization and analyses of photoinitiated three electron transfer processes and cyclobutane ring splitting by following the entire dynamical evolution during enzymatic repair with femtosecond resolution. We observed the complete dynamics of the reactants, all intermediates and final products, and determined their reaction time scales. Using (deoxy)uracil and thymine as dimer substrates, we unambiguously determined the electron tunneling pathways for the forward electron transfer to initiate repair and for the final electron return to restore the active cofactor and complete the catalytic photocycle. Significantly, we found that the adenine moiety of the unusual bent flavin cofactor is essential to mediating all electron-transfer dynamics through a superexchange mechanism, leading to a delicate balance of time scales. The cyclobutane ring splitting takes tens of picoseconds, while electron-transfer dynamics all occur on a longer time scale. The active-site structural integrity, unique electron tunneling pathways, and the critical role of adenine ensure the synergy of these elementary steps in this complex photorepair machinery to achieve maximum repair efficiency which is close to unity. Finally, we used the Marcus electron-transfer theory to evaluate all three electron-transfer processes and thus obtained their reaction driving forces (free energies), reorganization energies, and electronic coupling constants, concluding that the forward and futile back-electron transfer is in the normal region and that the final electron return of the catalytic cycle is in the inverted region.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dynamic determination of the functional state in photolyase and the implication for cryptochrome

Zheyun Liu; Meng Zhang; Xunmin Guo; Chuang Tan; Jiang Li; Lijuan Wang; Aziz Sancar; Dongping Zhong

The flavin adenine dinucleotide cofactor has an unusual bent configuration in photolyase and cryptochrome, and such a folded structure may have a functional role in initial photochemistry. Using femtosecond spectroscopy, we report here our systematic characterization of cyclic intramolecular electron transfer (ET) dynamics between the flavin and adenine moieties of flavin adenine dinucleotide in four redox forms of the oxidized, neutral, and anionic semiquinone, and anionic hydroquinone states. By comparing wild-type and mutant enzymes, we have determined that the excited neutral oxidized and semiquinone states absorb an electron from the adenine moiety in 19 and 135 ps, whereas the excited anionic semiquinone and hydroquinone states donate an electron to the adenine moiety in 12 ps and 2 ns, respectively. All back ET dynamics occur ultrafast within 100 ps. These four ET dynamics dictate that only the anionic hydroquinone flavin can be the functional state in photolyase due to the slower ET dynamics (2 ns) with the adenine moiety and a faster ET dynamics (250 ps) with the substrate, whereas the intervening adenine moiety mediates electron tunneling for repair of damaged DNA. Assuming ET as the universal mechanism for photolyase and cryptochrome, these results imply anionic flavin as the more attractive form of the cofactor in the active state in cryptochrome to induce charge relocation to cause an electrostatic variation in the active site and then lead to a local conformation change to initiate signaling.


Biochemistry | 2009

Comparative photochemistry of animal type 1 and type 4 cryptochromes

Nuri Ozturk; Christopher P. Selby; Sang Hun Song; Rui Ye; Chuang Tan; Ya Ting Kao; Dongping Zhong; Aziz Sancar

Cryptochromes (CRYs) are blue-light photoreceptors with known or presumed functions in light-dependent and light-independent gene regulation in plants and animals. Although the photochemistry of plant CRYs has been studied in some detail, the photochemical behavior of animal cryptochromes remains poorly defined in part because it has been difficult to purify animal CRYs with their flavin cofactors. Here we describe the purification of type 4 CRYs of zebrafish and chicken as recombinant proteins with full flavin complement and compare the spectroscopic properties of type 4 and type 1 CRYs. In addition, we analyzed photoinduced proteolytic degradation of both types of CRYs in vivo in heterologous systems. We find that even though both types of CRYs contain stoichiometric flavin, type 1 CRY is proteolytically degraded by a light-initiated reaction in Drosophila S2, zebrafish Z3, and human HEK293T cell lines, but zebrafish CRY4 (type 4) is not. In vivo degradation of type 1 CRYs does not require continuous illumination, and a single light flash of 1 ms duration leads to degradation of about 80% of Drosophila CRY in 60 min. Finally, we demonstrate that in contrast to animal type 2 CRYs and Arabidopsis CRY1 neither insect type 1 nor type 4 CRYs have autokinase activities.


Nature Communications | 2015

The molecular origin of high DNA-repair efficiency by photolyase

Chuang Tan; Zheyun Liu; Jiang Li; Xunmin Guo; Lijuan Wang; Aziz Sancar; Dongping Zhong

The primary dynamics in photomachinery such as charge separation in photosynthesis and bond isomerization in sensory photoreceptor are typically ultrafast to accelerate functional dynamics and avoid energy dissipation. The same is also true for the DNA repair enzyme, photolyase. However, it is not known how the photoinduced step is optimized in photolyase to attain maximum efficiency. Here, we analyse the primary reaction steps of repair of ultraviolet-damaged DNA by photolyase using femtosecond spectroscopy. With systematic mutations of the amino acids involved in binding of the flavin cofactor and the cyclobutane pyrimidine dimer substrate, we report our direct deconvolution of the catalytic dynamics with three electron-transfer and two bond-breaking elementary steps and thus the fine tuning of the biological repair function for optimal efficiency. We found that the maximum repair efficiency is not enhanced by the ultrafast photoinduced process but achieved by the synergistic optimization of all steps in the complex repair reaction.

Collaboration


Dive into the Chuang Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiang Li

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aziz Sancar

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Guo

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Nuri Ozturk

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge