Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanliang Zhao is active.

Publication


Featured researches published by Chuanliang Zhao.


PLOS ONE | 2014

Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants

Yongjun Sun; Huaili Zheng; Jun Zhai; Houkai Teng; Chun Zhao; Chuanliang Zhao; Yong Liao

The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance.


Journal of Hazardous Materials | 2017

Interactions of specific extracellular organic matter and polyaluminum chloride and their roles in the algae-polluted water treatment

Xiaomin Tang; Huaili Zheng; Baoyu Gao; Chuanliang Zhao; Bingzhi Liu; Wei Chen; Jinsong Guo

Extracellular organic matter (EOM) is ubiquitous in the algae-polluted water and has a significant impact on the human health and drinking water treatment. We investigate the different characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) recovered from the various growth period of Microcystis aeruginosa and the interactions of them and polyaluminum chloride (PACl). The roles of the different EOM in the algae-polluted water treatment are also discussed. The functional groups of aromatic, OH, NH, CN and NO in bEOM possessing the stronger interaction with hydroxyl aluminum compared with dEOM is responsible for bEOM and algae removal. Some low molecular weight (MW) organic components and protein-like substances in bEOM are most easily removed. And dEOM weakly reacts with PACl or inhibits coagulation, especially dEOM with the high MW organic components. The main coagulation mechanisms of bEOM are the generation of insoluble Al-bEOM through complexation, the bridge of AlO4Al12(OH)24(H2O)127+ (Al13), the adsorption of Al(OH)3(am) and the entrapment of flocs. The adsorption of Al13 and Al(OH)3(am) mainly contribute to dEOM removal. It is also recommended to treat the algae with dEOM and bEOM at the initial stage.


Ultrasonics Sonochemistry | 2018

Ultrasound-initiated synthesis of cationic polyacrylamide for oily wastewater treatment: Enhanced interaction between the flocculant and contaminants

Chuanliang Zhao; Huaili Zheng; Baoyu Gao; Yongzhi Liu; Jun Zhai; Shixin Zhang; Bincheng Xu

Weak interaction between flocculants and oil is a main bottleneck in the treatment of oil-containing wastewater. To solve this problem, a novel flocculant PAB with cationic micro-block structure and hydrophobic groups of benzene rings was synthesized by ultrasound initiated polymerization technique and applied to remove turbidity and oil from water. To avoid unnecessary addition of reagents in traditional template and micellar copolymerization, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) with self-assembly ability in aqueous solution was employed to synthesize flocculants. The critical association concentration of BMDAC measured by conductivity and surface tension methods was 0.014 mol·L-1. The results of reactivity ratio, statistical analysis of sequence-length distribution and 1H NMR provided evidence for the synthesis of copolymer with cationic micro-block. In addition, the apparent viscosity measurement indicated that PAB had an obvious hydrophobic association property. Finally, flocculation tests demonstrated that flocculation performance was greatly improved by adding PAB and the removal rate of oil and turbidity both reached the maximum (87.5% and 92%) at dosage of 40 mg·L-1 and pH of 7.0. Flocculation mechanism investigation demonstrated that the cooperation of charge neutralization, adsorption bridging, and hydrophobic association effect played an important role. The formed flocs by PAB was large, compact, difficult to break, and easy to regrow because of the enhanced interaction between flocculants and oil. In summary, this study can provide important reference in the design of organic flocculants in oily wastewater treatment applications.


Carbohydrate Polymers | 2018

Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups

Bingzhi Liu; Xin Chen; Huaili Zheng; Yili Wang; Yongjun Sun; Chuanliang Zhao; Shixin Zhang

A multifunctional carboxylate-rich magnetic chitosan flocculant (Mag@PIA-g-CS) was prepared through surface graft copolymerization on magnetite particles. The effect of monomer molar ratio, initiator and pre-neutralized degree on polymerization rate was determined. Various analytical methods were applied to characterize Mag@PIA-g-CS, exhibiting the successful grafting of polymers, good magnetic feature and core-shell structure. The kinetic process of Ni(II) and malachite green (MG) flocculation by Mag@PIA-g-CS reached equilibrium within <60min with the optimal uptake rate of 98.3% and 87.4%, and exhibited satisfactory removal effect in wide pH range (4.0-8.0 for Ni(II), 5.0-10.0 for MG). Mag@PIA-g-CS exhibited superior flocculation performance over chitosan magnetic flocculant (Mag@CS). The pH-dependent behavior, rapid responsiveness and sensitivity to ionic strength in batch flocculation tests indicated the distinct effect of ionic groups. Moreover, sweeping action of linear molecular chains facilitated further flocculation. Mag@PIA-g-CS showed high stability in extreme environments, and can be easily regenerated and separated.


RSC Advances | 2017

Enhancement of textile-dyeing sludge dewaterability using a novel cationic polyacrylamide: role of cationic block structures

Li Feng; Huaili Zheng; Baoyu Gao; Chuanliang Zhao; Shixin Zhang; Nan Chen

In this study, a novel cationic polyacrylamide (CPAM) with a microblock structure was successfully synthesized through ultrasonic-initiated template copolymerization (UTP) using allyltrimethylammonium chloride (TM) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as a template. Fourier transform infrared spectroscopy (FT-IR), 1H (13C) nuclear magnetic resonance spectroscopy (1H (13C) NMR), and thermogravimetric analysis (TGA) were employed to characterize the properties of the polymers. The results showed that the novel cationic microblock structure was formed in the template copolymer of TM and AM (TPTA). Besides, the copolymerization was demonstrated to follow an I zip-up (ZIP) template polymerization mechanism through the analysis of association constant (MK) and polymerization kinetics. The flocculation results of textile-dyeing sludge dewatering revealed that the polymer with the novel microblock structure showed an excellent flocculation performance. When the optimal conditions at pH of 7.0, dosage of 40 mg L−1 and the intrinsic viscosity of 2.3 dL g−1, the minimum SRF of 4.9 × 1012 m kg−1 and FCMC of 72.1% were observed. During the flocculation process, the cationic microblocks in TPTA extremely enhanced the ability of charge neutralization and bridging, and contributed much to the excellent flocculation performance in textile-dyeing sludge dewatering.


Materials | 2017

Improvement of Sludge Dewaterability by Ultrasound-Initiated Cationic Polyacrylamide with Microblock Structure: The Role of Surface-Active Monomers

Chuanliang Zhao; Huaili Zheng; Li Feng; Yili Wang; Yongzhi Liu; Bingzhi Liu; Badradine Djibrine

Cationic polyacrylamides have been employed widely to improve sludge dewatering performance, but the cationic units are randomly distributed in the molecular chain, which restricts the further enhancement of dewaterability. Common template technology to prepare block copolymers requiring a huge number of templates reduces the polymer purity and molecular weight. Here, we adopted the surface-active monomer benzyl dimethyl 2-(methacryloyloxy)ethyl ammonium chloride (BDMDAC) to synthesize cationic microblocky polyacrylamide initiated by ultrasound. The reactivity ratio of monomers suggested that novel cationic monomer BDMDAC had higher homopolymerization ability, and was thus more prone to forming a microblock structure. The statistical analysis of sequence-length distribution indicated that the number and length of cationic segments increased in the PAB molecules. In addition, the characteristic results of Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA) provided evidence for the synthesis of copolymer with cationic microblocks. Finally, the results of dewatering tests demonstrated that sludge dewaterability was greatly improved by adding the synthesized novel flocculants, and the sludge-specific resistance to filtration, filter cake moisture content and residual turbidity all reached a minimum (68.7%, 5.4 × 1012 m·kg−1, and 2.6 NTU, respectively) at 40 mg·L−1. The PAB flocs were large, compact, difficult to break, and easy to regrow. Furthermore, PAB was more effective in the removal of protein from soluble extracellular polymeric substances (SEPSs). In summary, this study provides a novel solution to synthesize cationic microblock polyacrylamide for improving sludge dewatering.


RSC Advances | 2017

Fabricating an anionic polyacrylamide (APAM) with an anionic block structure for high turbidity water separation and purification

Li Feng; Huaili Zheng; Baoyu Gao; Shixin Zhang; Chuanliang Zhao; Yuhao Zhou; Bincheng Xu

Ultraviolet (UV)-initiated template polymerization (UTP) was used as a feasible strategy to prepare a novel anionic polyacrylamide (APAM) with a microblock structure. In the template copolymerization system, acrylamide (AM) and sodium allylsulfonate (SAS) were used as monomers, and poly (allylammonium chloride) (PAAC) as a template. The chemical properties of the polymers were observed by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), 1H (13C) nuclear magnetic resonance spectroscopy (1H (13C)), and thermogravimetry/differential scanning calorimetry (TG/DSC). Results showed that the novel anionic microblock structure was formed in the template copolymer. Besides, the results of the association constant (KM) indicated that the copolymerization followed I Zip-up (ZIP) template polymerization mechanism, which indicated the formation of the microblock structure again. Parameters such as pH and dosage that affected the flocculation performance, flocculation kinetics and the FTIR spectra of the generated flocs were investigated to further observe the effect of anionic microblocks on flocculation performance and understand the relationship between the flocs and flocculants. Flocculation experimental results demonstrated that the anionic microblocks in the template copolymer could enhance the charge neutralization and bridging ability, and therefore an excellent flocculation performance of treating high turbidity water was observed.


RSC Advances | 2017

Characterization of an inorganic polymer coagulant and coagulation behavior for humic acid/algae-polluted water treatment: polymeric zinc–ferric–silicate–sulfate coagulant

Yong Liao; Xiaomin Tang; Qingqing Yang; Wei Chen; Bingzhi Liu; Chuanliang Zhao; Jun Zhai; Huaili Zheng

Algae and algae organic matter (AOM) are not the sole pollutants in algae-polluted water. Other pollutants such as colloidal particles and natural organic matter should be simultaneously removed and might influence the treatment of algae and AOM. A new polymeric zinc–ferric–silicate–sulfate (PZFSiS) coagulant was prepared, and the relationship between its structure and performance in the treatment of humic acid (HA)/algae-polluted water was discussed. PZFSiS coagulants prepared under different conditions had different distributions of Fe(III) species. The coagulant possessing the highest Feb content was able to treat turbidity and HA well. As a copolymer of Fe(III), Zn(II) and Si(IV), PZFSiS had a positive charge in water and thus neutralized the negative surface charges of pollutants. The adsorption of hydroxyl polymer formed by Fe/Zn during the hydrolysis process contributed to the removal of organic matter. The dosage of PZFSiS and pH significantly influenced pollutant removal. Colloidal particles in the water competed with the organic matter, markedly decreasing the removal efficiency of organic matter by coagulation.


RSC Advances | 2017

Polymer-grafted magnetic microspheres for enhanced removal of methylene blue from aqueous solutions

Bincheng Xu; Chaofan Zheng; Huaili Zheng; Yili Wang; Chun Zhao; Chuanliang Zhao; Shixin Zhang

Novel polymer-grafted magnetic microspheres (GMMs) were prepared by graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and acrylic acid (AA) onto the surface of chitosan/magnetite composite microspheres (MMs). The magnetic microspheres were fully characterized and then applied to the adsorption of a cationic dye (methylene blue, MB) from aqueous solutions. Results show that the adsorption capacity of GMMs was notably enhanced compared with MMs. Furthermore, the effects of initial solution pH, contact time and initial concentration on MB adsorption by GMMs were systematically investigated. The adsorption kinetics and adsorption isotherms are well described by pseudo-second-order kinetic model and Langmuir isotherm model respectively, suggesting the adsorption is a homogeneous monolayer adsorption. The maximum MB adsorption capacity by GMMs is found to be 925.9 mg g−1 at 298.15 K and initial solution pH 9.0, as determined from the Langmuir isotherm. The MB-loaded GMMs can be rapidly separated and effectively regenerated at pH 2.0.


PLOS ONE | 2015

Enhanced Coagulation-Flocculation Performance of Iron-Based Coagulants: Effects of PO43- and SiO32- Modifiers

Wei Chen; Huaili Zheng; Houkai Teng; Yili Wang; Yuxin Zhang; Chuanliang Zhao; Yong Liao

PO4 3- and SiO3 2- are often used as modifier to improve stability and aggregating ability of the iron-base coagulants, however, there are few reports about their detailed comparison between the coagulation performance and mechanisms. In this study, three coagulants—polyferric phosphoric sulfate (PFPS), polysilicon ferric sulfate (PFSS), and polyferric sulfate (PFS) were synthesized; their structure and morphology were characterized by Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and Scanning electron microscope (SEM). Alkali titration and Ferron species analysis were employed to investigate the hydrolysis performance and species distribution. Jar test was conducted to measure their coagulation behaviors at different dosage, pH, and temperatures in which the flocs properties were measured. The results showed that a number of new compounds were formed due to the presence of PO4 3- and SiO3 2-. Moreover, PFPS and PFSS had similar level in Fea as well as Feb. Among them, PFPS produced more multi-core iron atoms polymer and content of Feb, and the formed flocs were larger and denser. It exhibited superior coagulation performance in terms of turbidity reduction, UV254 removal and residual ferric concentration. Jar test and floc breakage/regrowth experiments indicated other than charge neutrality, the dominated mechanism involved in PFSS was the adsorption between polysilicic acid and solution particle, while PFPS was sweeping, entrapment/adsorption resulting from larger polymer colloid of Fe-P chemistry bond.

Collaboration


Dive into the Chuanliang Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yili Wang

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Chen

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge