Chuanxin Wang
Shandong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chuanxin Wang.
Cancer Letters | 2013
Juan Li; Lutao Du; Yongmei Yang; Chuanxin Wang; Hui Liu; Lili Wang; Xin Zhang; Wei Li; Guixi Zheng; Zhaogang Dong
Emerging evidence has demonstrated that microRNAs (miRNAs) can act as oncogenes or tumor suppressors to participate in cancer development. In this study, we found that miR-429 expression was up-regulated in human colorectal cancer (CRC) tissues, and the high miR-429 expression was significantly associated with tumor size, lymph node metastasis and poor prognosis. Functionally, miR-429 overexpression suppressed cell apoptosis by directly targeting SOX2 in HT-29 cells. Taken together, our data suggest for the first time that miR-429 could play an oncogenic role in the cellular processes of CRC and represent a novel prognostic biomarker for CRC.
International Journal of Cancer | 2015
Xiumei Jiang; Lutao Du; Lili Wang; Juan Li; Yimin Liu; Guixi Zheng; Ailin Qu; Xin Zhang; Hongwei Pan; Yongmei Yang; Chuanxin Wang
Recent advantages of serum microRNAs (miRNAs) open a new realm of possibilities for noninvasive diagnosis and prognosis of bladder cancer (BC). The aim of our study was to identify serum miRNA expression signatures in patients with BC and establish new models for the diagnosis of BC and recurrence prediction. We performed genome‐wide serum miRNA analysis by Miseq sequencing followed by evaluations in the training and validation sets with reverse transcription quantitative real‐time PCR assays from serum samples of 250 patients with BC and 240 controls. A six‐miRNA panel (miR‐152, miR‐148b‐3p, miR‐3187‐3p, miR‐15b‐5p, miR‐27a‐3p and miR‐30a‐5p) for the diagnosis of BC was finally developed by multivariate logistic regression model with an area under the receiver operating characteristic curve of 0.899. The corresponding sensitivities of this panel for Ta, T1 and T2–T4 were 90.00, 84.85 and 89.36%, significantly higher than those of urine cytology, which were 13.33, 30.30 and 44.68%, respectively (all at p < 0.001). In addition, Kaplan–Meier analysis showed that patients with nonmuscle‐invasive BC (NMIBC) with high miR‐152 level and low miR‐3187‐3p level had worse recurrence‐free survival (p = 0.023 and 0.043, respectively). In multivariate Cox regression analysis, miR‐152 was independently associated with tumor recurrence of NMIBC (p = 0.028). Our results suggested that a serum miRNA signature may have considerable clinical value in diagnosing BC. Furthermore, expression level of serum miR‐152 could provide information on the recurrence risk of NMIBC.
PLOS ONE | 2013
Guixi Zheng; Wang Hy; Xin Zhang; Yongmei Yang; Lili Wang; Lutao Du; Wei Li; Juan Li; Ailin Qu; Yimin Liu; Chuanxin Wang
Serum microRNAs (miRNAs) have become a highlighted research hotspot, especially for their great potential as a novel promising non-invasive biomarker in cancer diagnosis. The most frequently used approach for serum miRNAs detection is quantitative real time polymerase chain reaction (qPCR). In order to obtain reliable qPCR data of miRNAs expression, the use of reference genes as endogenous control is undoubtly necessary. However, no systematic evaluation and validation of reference genes for normalizing qPCR analysis of serum miRNAs has been reported in colorectal adenocarcinoma. We firstly profiled pooled serum of colorectal adenocarcinoma, colorectal adenoma and healthy controls and selected a list of 13 miRNAs as candidate reference genes. U6 snRNA (U6) and above-mentioned 13 miRNAs were included in further confirmation by qPCR. As a result, 5 miRNAs (miR-151a-3p, miR-4446-3p, miR-221-3p, miR-93-5p and miR-3184-3p) were not detected in all samples and 2 miRNAs (miR-197-3p and miR-26a-5p) were relatively low with median Cq more than 35, and were excluded from further stability analysis. Then variable stability of other 6 miRNAs (miR-103b, miR-484, miR-16-5p, miR-3615, miR-18a-3p and miR-191-5p) and U6 were evaluated using two algorithms: geNorm and NormFinder which both identified miR-191-5p as the most stably expressed reference gene and selected miR-191-5p and U6 as the most stable pair of reference genes. After validating in an independent large cohorts and selecting miR-92a-3p as target miRNA to evaluate the effect of reference gene, we propose that combination of miR-191-5p and U6 could be used as reference genes for serum microRNAs qPCR data in colorectal adenocarcinoma, colorectal adenoma and healthy controls.
Oncotarget | 2016
Tong Liu; Xin Zhang; Shanyu Gao; Fangmiao Jing; Yongmei Yang; Lutao Du; Guixi Zheng; Peilong Li; Chen Li; Chuanxin Wang
Cancer-secreted long non-coding RNAs (lncRNAs) are emerging mediators of cancer-host cross talk. The aim of our study was to illustrate the clinical significance of the lncRNA CRNDE-h in exosomes purified from the serum of patients with colorectal cancer (CRC). The study was divided into four parts: (1) The exosome isolated methods and lncRNA detected methods which accurately and reproducibly measure CRC-related exosomal CRNDE-h in serum were optimized in preliminary pilot stage; (2) The stability of exosomal CRNDE-h was evaluated systematically; (3) The origin of exosomal CRNDE-h was explorated in vitro and in vivo; (4) The diagnostic and prognostic value of exosomal CRNDE-h for CRC were validated in 468 patients. In pilot study, our results indicated that exosomal CRNDE-h was detectable and stable in serum of CRC patients, and derived from tumor cells. Then, the increased expression of exosomal CRNDE-h was successfully validated in 148 CRC patients when compared with colorectal benign disease patients and healthy donors. Exosomal CRNDE-h level significantly correlated with CRC regional lymph node metastasis (P = 0.019) and distant metastasis (P = 0.003). Moreover, at the cut-off value of 0.020 exosomal CRNDE-h level of serum, the area under ROC curve distinguishing CRC from colorectal benign disease patients and healthy donors was 0.892, with 70.3% sensitivity and 94.4% specificity, which was superior to carcinoembryogenic antigen. In addition, high exosomal CRNDE-h level has a lower overall survival rates than that for low groups (34.6% vs. 68.2%, P < 0.001). In conclusion, detection of lncRNA CRNDE-h in exosome shed a light on utilizing exosomal CRNDE-h as a noninvasive serum-based tumor marker for diagnosis and prognosis of CRC.
PLOS ONE | 2014
Ailin Qu; Lutao Du; Yongmei Yang; Hui Liu; Juan Li; Lili Wang; Yimin Liu; Zhaogang Dong; Xin Zhang; Xiumei Jiang; Wang Hy; Zewu Li; Guixi Zheng; Chuanxin Wang
MicroRNA-210 (miR-210), the master hypoxamir, plays pleiotropic roles in certain cancers; however, its role in the development of human colorectal cancer remains unclear. Herein, we report that miR-210 is frequently up-regulated in colorectal cancer tissues, with high miR-210 expression significantly correlating with large tumor size, lymph node metastasis, advanced clinical stage and poor prognosis. Functionally, miR-210 overexpression promotes the migration and invasion of colorectal cancer cells. Furthermore, miR-210 can be induced by hypoxia and mediates the hypoxia-induced metastasis of colorectal cancer cells. In addition, vacuole membrane protein 1 (VMP1) is identified as the direct and functional target of miR-210. Thus, miR-210 is a useful biomarker for hypoxic tumor cells and a prognostic factor that plays an essential role in colorectal cancer metastasis.
International Journal of Colorectal Disease | 2013
Hui Liu; Lutao Du; Zhihua Wen; Yongmei Yang; Juan Li; Lili Wang; Xin Zhang; Yimin Liu; Zhaogang Dong; Wei Li; Guixi Zheng; Chuanxin Wang
PurposeAccumulating evidences indicate that dysregulated microRNAs (miRNA) are involved in cancer tumorigenesis and progression. In the present study, we evaluated the expression of miR-182 in colorectal cancer and adjacent noncancerous tissues and explored its associations with clinicopathological characteristics and prognosis.MethodsQuantitative real-time PCR was used to analyze the expression of miR-182 in 148 pairs of colorectal cancer and adjacent noncancerous tissues. The relationship between miR-182 expression and clinicopathological characteristics in colorectal cancer tissues was estimated using Mann–Whitney U test or Kruskal–Wallis test, as appropriate. We calculated the survival curves and prognostic values of each variable by the Kaplan–Meier method and Cox proportional hazards regression analysis, respectively.ResultsThe expression of miR-182 was found up-regulated in colorectal cancer tissues compared with adjacent noncancerous tissues (p < 0.001), and its up-regulation was significantly correlated with large tumor size (p = 0.016), positive regional lymph node metastasis (p = 0.008), and advanced tumor–node–metastasis stage (p = 0.020). Furthermore, Kaplan–Meier analysis demonstrated that high miR-182 expression predicted poor survival (p = 0.001), and Cox proportional hazards risk analysis indicated that miR-182 was an independent prognostic factor for colorectal cancer.ConclusionsMiR-182 was up-regulated in colorectal cancer tissues and correlated with adverse clinical characteristics and poor prognosis, indicating that miR-182 might be involved in colorectal cancer progression and could be used as a potential prognostic biomarker and therapeutic target in the management of colorectal cancer.
Oncotarget | 2016
Hairong Liu; Juan Li; Pratirodh Koirala; Xianfeng Ding; Binghai Chen; Yiheng Wang; Zheng Wang; Chuanxin Wang; Xu Zhang; Yin-Yuan Mo
Long non-coding RNAs (lncRNAs) have been recently shown to play an important role in gene regulation and normal cellular functions, and disease processes. However, despite the overwhelming number of lncRNAs identified to date, little is known about their role in cancer for vast majority of them. The present study aims to determine whether lncRNAs can serve as prognostic markers in human breast cancer. We interrogated the breast invasive carcinoma dataset of the Cancer Genome Atlas (TCGA) at the cBioPortal consisting of ~ 1,000 cases. Among 2,730 lncRNAs analyzed, 577 lncRNAs had alterations ranging from 1% to 32% frequency, which include mutations, alterations of copy number and RNA expression. We found that deregulation of 11 lncRNAs, primarily due to copy number alteration, is associated with poor overall survival. At RNA expression level, upregulation of 4 lncRNAs (LINC00657, LINC00346, LINC00654 and HCG11) was associated with poor overall survival. A third signature consists of 9 lncRNAs (LINC00705, LINC00310, LINC00704, LINC00574, FAM74A3, UMODL1-AS1, ARRDC1-AS1, HAR1A, and LINC00323) and their upregulation can predict recurrence. Finally, we selected LINC00657 to determine their role in breast cancer, and found that LINC00657 knockout significantly suppresses tumor cell growth and proliferation, suggesting that it plays an oncogenic role. Together, these results highlight the clinical significance of lncRNAs, and thus, these lncRNAs may serve as prognostic markers for breast cancer.
Molecular Cancer Therapeutics | 2017
Peilong Li; Xin Zhang; Haiyan Wang; Lili Wang; Tong Liu; Lutao Du; Yongmei Yang; Chuanxin Wang
A major reason for oxaliplatin chemoresistance in colorectal cancer is the acquisition of epithelial–mesenchymal transition (EMT) in cancer cells. The long noncoding RNA (lncRNA), MALAT1, is a highly conserved nuclear ncRNA and a key regulator of metastasis development in several cancers. However, its role in oxaliplatin-induced metastasis and chemoresistance is not well known. In this study, we aim to investigate the prognostic and therapeutic role of lncRNA MALAT1 in colorectal cancer patients receiving oxaliplatin-based therapy and further explore the potential transcriptional regulation through interaction with EZH2 based on the established HT29 oxaliplatin-resistant cells. Our results showed that high MALAT1 expression was associated with reduced patient survival and poor response to oxaliplatin-based chemotherapy in advanced colorectal cancer patients. Oxaliplatin-resistant colorectal cancer cells exhibited high MALAT1 expression and EMT. LncRNA MALAT1 knockdown enhances E-cadherin expression and inhibits oxaliplatin-induced EMT in colorectal cancer cells. EZH2 is highly expressed and associated with the 3′ end region of lncRNA MALAT1 in colorectal cancer, and this association suppressed the expression of E-cadherin. Furthermore, targeted inhibition of MALAT1 or EZH2 reversed EMT and chemoresistance induced by oxaliplatin. Finally, the interaction between lncRNA MALAT1 and miR-218 was observed, which further indicated its prognostic value in patients who received standard FOLFOX (oxaliplatin combine with 5-fluorouracil and leucovorin) treatment. In conclusion, this study illuminates the prognostic role of lncRNA MALAT1 in colorectal cancer patients receiving oxaliplatin-based treatment and further demonstrates how lncRNA MALAT1 confers a chemoresistant function in colorectal cancer. Thus, lncRNA MALAT1 may serve as a promising prognostic and therapeutic target for colorectal cancer patients. Mol Cancer Ther; 16(4); 739–51. ©2017 AACR.
PLOS ONE | 2015
Jinfeng Wang; Xin Zhang; Lili Wang; Yongmei Yang; Zhaogang Dong; Wang Hy; Lutao Du; Chuanxin Wang
MicroRNA-214 (miR-214) has been reported to be dysregulated in human bladder cancer tissues. We aimed to investigate the clinical correlation, biological significance and molecular network of miR-214 in bladder cancer. Our results showed miR-214 was down-regulated in bladder cancer tissues and significantly associated with tumor stage, lymph node status, grade, multifocality, history of non-muscle-invasive bladder cancer (NMIBC). Moreover, miR-214 could serve as an independent factor of recurrence-free survival (RFS) and overall survival (OS) for patients with muscle-invasive bladder cancer (MIBC). Restoration of miR-214 expression in bladder cancer cell lines inhibited cell proliferation, migration, invasion and markedly promoted apoptosis. Dual-luciferase reporter assay recognized PDRG1 as direct downstream target gene of miR-214. PDRG1 was significantly increased in tumors low of miR-214 and knockdown of PDRG1 mimicked the effects of miR-214 overexpression. Our findings manifest that miR-214 could exert tumor-suppressive effects in bladder cancer by directly down-regulating oncogene PDRG1 and suggest an appealing novel indicator for prognostic and therapeutic intervention of bladder cancer.
PLOS ONE | 2012
Xuhua Zhang; Zhiying Xiao; Xiaoyong Liu; Lutao Du; Lili Wang; Shun Wang; Ni Zheng; Guixi Zheng; Wei Li; Xin Zhang; Zhaogang Dong; Xuewei Zhuang; Chuanxin Wang
Colorectal cancer (CRC) is the third most common malignancy in the world. The risk of death is closely correlated to the stage of CRC at the time of primary diagnosis. Therefore, there is a compelling need for the identification of blood biomarkers that can enable early detection of CRC. We used a quantitative proteomic approach with isobaric labeling (iTRAQ) to examine changes in the plasma proteome of 10 patients with CRC compared to healthy volunteers. Enzyme-Linked Immunosorbnent Assay (ELISA) and Western blot were used for further validation. In our quantitative proteomics analysis, we detected 75 human plasma proteins with more than 95% confidence using iTRAQ labeling in conjunction with microQ-TOF MS. 9 up-regulated and 4 down-regulated proteins were observed in the CRC group. The ORM2 level in plasma was confirmed to be significantly elevated in patients suffering from CRC compared with the controls. ORM2 expression in CRC tissues was significantly increased compared with that in corresponding adjacent normal mucous tissues (P<0.001). ITRAQ together with Q-TOF/MS is a sensitive and reproducible technique of quantitative proteomics. Alteration in expression of ORM2 suggests that ORM2 could be used as a potential biomarker in the diagnosis of CRC.