Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanyang Su is active.

Publication


Featured researches published by Chuanyang Su.


International Immunopharmacology | 2014

Role of α-lipoic acid in LPS/d-GalN induced fulminant hepatic failure in mice: studies on oxidative stress, inflammation and apoptosis.

Xiaomin Xia; Chuanyang Su; Juanli Fu; Pu Zhang; Xiaoji Jiang; Demei Xu; Lihua Hu; Erqun Song; Yang Song

This study investigated the protective effect of α-lipoic acid (LA) on lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced fulminant hepatic failure in mice. First, we found that LA markedly reduced LPS/d-GalN-induced increases in serum ALT and AST activities, which were supplemented with histopathological examination, suggested that LA has a protective effect on this model of hepatic damage. Livers challenged with LPS/d-GalN exhibited extensive areas of vacuolization with the disappearance of nuclei and the loss of hepatic architecture. On the contrary, these pathological alterations were ameliorated by LA treatment. Next, we found that ROS and TBARS levels were increased in LPS/d-GalN treated liver homogenates, which were attenuated by LA administration. Consistently, decreases in hepatic CAT and GPx activities were observed in LPS/d-GalN group and were significantly restored by LA administration. Moreover, pretreatment with LA markedly reduced LPS/d-GalN-induced iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6 expressions. Furthermore, our data showed that TUNEL-positive cells increased in LPS/d-GalN-treated mice liver which was counteracted by LA administration. LPS/d-GalN induced apoptosis of hepatocytes, as estimated by caspase 3, caspase 8 and caspase 9 activations. Also, the increasing of Bax and the decreasing of Bcl-2 expressions also supported LPS/d-GalN induced apoptosis. Interestingly, LA marked relieved these apoptotic features. Taking together, our results indicated that LA plays an important role on LPS/d-GalN-induced fulminant hepatic failure through its antioxidant, anti-inflammatory and anti-apoptotic activities.


Life Sciences | 2014

Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in GSH-related enzyme activity and expression

Erqun Song; Chuanyang Su; Juanli Fu; Xiaomin Xia; Siyu Yang; Congxue Xiao; Bin Lu; Hongjun Chen; Zhiyin Sun; Shanmei Wu; Yang Song

AIMS This study was designed to investigate the protective effects of selenium supplementation on patulin-induced neurotoxicity. MAIN METHODS Mice were subjected to patulin for 8 weeks. Sodium selenite (Na2SeO3) and selenium-methionine (Se-Met) were supplemented with the diet, and we investigated the effects of selenium on patulin-induced neurotoxicity. The animals were randomly divided into 4 groups containing 6-8 mice each. The first group was used as a control, and only physiological saline (0.9%) was injected. The second group was treated with patulin (1mg/kg) intraperitoneally. The third group was treated with patulin (1mg/kg) along with a dietary supplementation of Na2SeO3 (0.2mg Se/kg of diet). The fourth group was treated with patulin (1mg/kg) plus Se-Met (0.2mg Se/kg of diet). KEY FINDINGS Patulin treatment increased oxidative damage in the brain, as evidenced by a decrease in non-protein thiol and total thiol groups, along with significant increases in GSSG, reactive oxygen species, thiobarbituric acid reactive substances and protein carbonyl levels. Moreover, the activities of glutathione peroxidase (GPx) and glutathione reductase were inhibited with patulin treatment. Selenium supplementation significantly ameliorated these biological parameter changes. In addition, selenium treatments significantly increased the mRNA levels of GPx-1, GPx-4 and thioredoxin reductase. SIGNIFICANCE Our data show that selenium supplementation increases the activity and expression of glutathione-related enzymes and offers significant protection against brain damage induced by patulin.


PLOS ONE | 2014

Bazhen Decoction Protects against Acetaminophen Induced Acute Liver Injury by Inhibiting Oxidative Stress, Inflammation and Apoptosis in Mice

Erqun Song; Juanli Fu; Xiaomin Xia; Chuanyang Su; Yang Song

Bazhen decoction is a widely used traditional Chinese medicinal decoction, but the scientific validation of its therapeutic potential is lacking. The objective of this study was to investigate corresponding anti-oxidative, anti-inflammatory and anti-apoptosis activities of Bazhen decoction, using acetaminophen-treated mice as a model system. A total of 48 mice were divided into four groups. Group I, negative control, treated with vehicle only. Group II, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days. Group III, received a single dose of 900 mg/kg acetaminophen. Group IV, fed with 500 mg/kg/day Bazhen decoction for 10 continuous days and a single dose of 900 mg/kg acetaminophen 30 min before last Bazhen decoction administration. Bazhen decoction administration significantly decrease acetaminophen-induced serum ALT, AST, ALP, LDH, TNF-α, IL-1β, ROS, TBARS and protein carbonyl group levels, as well as GSH depletion and loss of MMP. Bazhen decoction restore SOD, CAT, GR and GPx activities and depress the expression of pro-inflammatory factors, such as iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6, respectively. Moreover, Bazhen decoction down-regulate acetaminophen-induced Bax/Bcl-2 ratio, caspase 3, caspase 8 and caspase 9. These results suggest the anti-oxidative, anti-inflammatory and anti-apoptosis properties of Bazhen decoction towards acetaminophen-induced liver injury in mice.


Toxicology and Applied Pharmacology | 2014

Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

Demei Xu; Lihua Hu; Chuanyang Su; Xiaomin Xia; Pu Zhang; Juanli Fu; Wenchao Wang; Duo Xu; Hong Du; Qiuling Hu; Erqun Song; Yang Song

This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling.


Journal of Agricultural and Food Chemistry | 2015

Neohesperidin Dihydrochalcone versus CCl4-Induced Hepatic Injury through Different Mechanisms: The Implication of Free Radical Scavenging and Nrf2 Activation

Chuanyang Su; Xiaomin Xia; Qiong Shi; Xiufang Song; Juanli Fu; Congxue Xiao; Hongjun Chen; Bin Lu; Zhiyin Sun; Shanmei Wu; Siyu Yang; Xuegang Li; Xiaoli Ye; Erqun Song; Yang Song

Neohesperidin dihydrochalcone (NHDC), a sweetener derived from citrus, belongs to the family of bycyclic flavonoids dihydrochalcones. NHDC has been reported to act against CCl4-induced hepatic injury, but its mechanism is still unclear. We first discovered that NHDC showed a strong ability to scavenge free radicals. In addition, NHDC induces the phase II antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H/quinone oxidoreductase 1 (NQO1) through the activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) signaling. Further assays demonstrated that NHDC induces accumulation of Nrf2 in the nucleus and augmented Nrf2-ARE binding activity. Moreover, NHDC inhibits the ubiquitination of Nrf2 and suggests the modification of Kelch-like ECH-associated protein 1 (Keap1) and the disruption of the Keap1/Nrf2 complex. c-Jun N-terminal kinase (JNK) and p38 but not extracellular signal-regulated protein kinase (ERK) phosphorylations were up-regulated by NHDC treatment. Taken together, NHDC showed its protective antioxidant effect against CCl4-induced oxidative damage via the direct free radical scavenging and indirect Nrf2/ARE signaling pathway.


Food and Chemical Toxicology | 2014

Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration

Erqun Song; Xiaomin Xia; Chuanyang Su; Wenjing Dong; Yaping Xian; Wei Wang; Yang Song

Patulin (PAT) is a mycotoxin produced by certain species of Penicillium, Aspergillus, and Byssochlamys. Previous studies demonstrated its cytotoxic, genotoxic, and mutagenic effects in different cell lines. However, there is little information available concerning its toxic behavior in vivo. In the present study, we investigated PAT-induced hepatotoxicity and genotoxicity in mice. We also investigated the antioxidant and anti-genotoxicity efficiency of green tea polyphenols (GTP) against PAT-induced toxicity. We found that PAT-treatment induced serum alanine transaminase (ALT) and aspartate transaminase (AST) activities significantly. PAT-induced lipid peroxidation was confirmed with the elevation of thiobarbituric acid-reactive substances (TBARS). Moreover, the increasing of reactive oxygen species (ROS) and decreasing of GSH level implied its oxidative damage mechanism. In bone marrow cell, PAT was found to induce micronucleus and chromosomal aberration formation. In addition, our result suggested that GTP administration has dose-dependent antioxidative and antigenotoxic effect in against PAT-induced hepatotoxicity and genotoxicity.


Environmental Toxicology and Pharmacology | 2016

Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IκB/NF-κB signaling

Juanli Fu; Qiong Shi; Xiufang Song; Xiaomin Xia; Chuanyang Su; Zixuan Liu; Erqun Song; Yang Song

Tetrachlorobenzoquinone (TCBQ) is a joint metabolite of persistent organic pollutants (POPs), hexachlorobenzene (HCB) and pentachlorophenol (PCP). Previous studies have been reported that TCBQ contributes to acute hepatic damage due to its pro-oxidative nature. In the current study, TCBQ showed the highest capacity on the cytotoxicity, ROS formation and inflammatory cytokines release among four compounds, i.e., HCB, PCP, tetrachlorohydroquinone (TCHQ, reduced form of TCBQ) and TCBQ, in PC 12 cells. Further mechanistic study illustrated TCBQ activates nuclear factor-kappa B (NF-κB) signaling. The activation of NF-κB was identified by measuring the protein expressions of inhibitor of nuclear factor kappa-B kinase (IKK) α/β, p-IKKα/β, an inhibitor of NF-κB (IκB) α, p-IκBα, NF-κB (p65) and p-p65. The translocation of NF-κB was assessed by Western blotting of p65 in nuclear/cytosolic fractions, electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. In addition, TCBQ significantly induced protein and mRNA expressions of inflammatory cytokines and mediators, such as interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor inhibited these effects efficiently, further suggested TCBQ-induced inflammatory responses involve NF-κB signaling. Moreover, antioxidants, i.e., N-acetyl-l-cysteine (NAC), Vitamin E and curcumin, ameliorated TCBQ-induced ROS generation as well as the activation of NF-κB, which implied that ROS serve as the upstream molecule of NF-κB signaling. In summary, TCBQ exhibits a neurotoxic effect by inducing oxidative stress-mediated inflammatory responses via the activation of IKK/IκB/NF-κB pathway in PC12 cells.


International Immunopharmacology | 2015

Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice.

Qiong Shi; Xiufang Song; Juanli Fu; Chuanyang Su; Xiaomin Xia; Erqun Song; Yang Song

The present study evaluated the protective effect of artificial sweetener neohesperidin dihydrochalcone (NHDC) against paraquat (PQ)-induced acute liver injury in mice. A single dose of PQ (75mg/kg body weight, i.p.) induced acute liver toxicity with the evidences of increased liver damage biomarkers, aspartate transaminase (AST) and alanine transaminase (ALT) activities in serum. Consistently, PQ decreased the antioxidant capacity by reducing glutathione peroxidase (GP-X), glutathione-S-transferase (GST) and catalase (CAT) activities, glutathione (GSH) level and total antioxidant capacity (T-AOC), as well as increasing reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels. Histopathological examination revealed that PQ induced numerous changes in the liver tissues. Immunochemical staining assay indicated the upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. However, NHDC ameliorates PQ-induced hepatic toxicity in mice by reversing these parameters. Additionally, NHDC significantly inhibited PQ-induced nuclear factor-kappa B (NF-κB) expression and mitochondrial-driven apoptotic signaling. TUNEL assay confirmed that PQ-induced apoptosis was relieved by NHDC. In conclusion, these findings suggested that NHDC showed potent antioxidant, anti-inflammatory and anti-apoptotic effects against PQ-induced acute liver damage.


Chemical Research in Toxicology | 2015

Polychlorinated Biphenyl Quinone Metabolite Promotes p53-Dependent DNA Damage Checkpoint Activation, S-Phase Cycle Arrest and Extrinsic Apoptosis in Human Liver Hepatocellular Carcinoma HepG2 Cells

Xiufang Song; Lingrui Li; Qiong Shi; Hans-Joachim Lehmler; Juanli Fu; Chuanyang Su; Xiaomin Xia; Erqun Song; Yang Song

Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants. The toxic behavior and mechanism of PCBs individuals and congeners have been extensively investigated. However, there is only limited information on their metabolites. Our previous studies have shown that a synthetic PCB metabolite, PCB29-pQ, causes oxidative damage with the evidence of cytotoxicity, genotoxicity, and mitochondrial-derived intrinsic apoptosis. Here, we investigate the effects of PCB29-pQ on DNA damage checkpoint activation, cell cycle arrest, and death receptor-related extrinsic apoptosis in human liver hepatocellular carcinoma HepG2 cells. Our results illustrate that PCB29-pQ increases the S-phase cell population by down-regulating cyclins A/D1/E, cyclin-dependent kinases (CDK 2/4/6), and cell division cycle 25A (CDC25A) and up-regulating p21/p27 protein expressions. PCB29-pQ also induces apoptosis via the up-regulation of Fas/FasL and the activation of caspase 8/3. Moreover, p53 plays a pivotal role in PCB29-pQ-induced cell cycle arrest and apoptosis via the activation of ATM/Chk2 and ATR/Chk1 checkpoints. Cell cycle arrest and apoptotic cell death were attenuated by the pretreatment with antioxidant N-acetyl-cysteine (NAC). Taken together, these results demonstrate that PCB29-pQ induces oxidative stress and promotes p53-dependent DNA damage checkpoint activation, S-phase cycle arrest, and extrinsic apoptosis in HepG2 cells.


Neurotoxicology | 2015

Tetrachlorobenzoquinone triggers the cleavage of Bid and promotes the cross-talk of extrinsic and intrinsic apoptotic signalings in pheochromocytoma (PC) 12 cells

Lihua Hu; Chuanyang Su; Xiufang Song; Qiong Shi; Juanli Fu; Xiaomin Xia; Demei Xu; Erqun Song; Yang Song

Although there are few studies suggested PCP exposure induced developmental and behavioral disorders, however, the occurrence of neurotoxicity and PCP has not been firmly established. Tetrachlorobenzoquinone (TCBQ) is a reactive metabolite of environmental pollutant pentachlorophenol (PCP). To the best of our knowledge, there has no information regarding to the neurological toxic effect of TCBQ available. Here, we demonstrated that TCBQ induces cytotoxicity in pheochromocytoma PC12 cell line, and the mode-of-action analysis indicated the involvement of apoptotic signalings, such as the activation of caspase family proteins, the increased expressions of Fas and Fas-associated death domain (FADD), the loss of mitochondrial membrane potential (MMP), the release of cytochrome c (Cyt c) and the cleavage of the caspase substrates poly(ADP-ribose) polymerase (PARP). BI-6C9, a specific BH3-interacting domain death agonist (Bid) inhibitor, repressed TCBQ-induced Bid truncation, along with the activation of caspase 3 and the release of Cyt c, suggested the cross-talk of extrinsic and intrinsic apoptotic signalings. Furthermore, the inhibition of caspase 8 impaired TCBQ-induced the activation of caspase 3, as well as the release of Cyt c and the cleavage of Bid, suggesting caspase 8 acting as the upstream molecule of Bid, and TCBQ-induced apoptosis is initiated via caspase 8, leads to the activation of caspase 9/3 through Bid-mediated amplification loop. Finally, the pretreatment of antioxidant NAC ameliorated Fas, FADD and caspase 8/3 expressions, which illustrated that TCBQ-induced apoptotic signaling is ROS dependent. Taken together, these results indicated that the cleavage of Bid may play an important role in TCBQ-induced neurotoxicity which promotes the cross-talk of extrinsic and intrinsic apoptotic signalings in PC12 cells.

Collaboration


Dive into the Chuanyang Su's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Demei Xu

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Lihua Hu

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Dong

Southwest University

View shared research outputs
Researchain Logo
Decentralizing Knowledge