Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuanzhi Zhao is active.

Publication


Featured researches published by Chuanzhi Zhao.


BMC Genomics | 2015

Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may).

Pengfei Wang; Han Xia; Ye Zhang; Shuzhen Zhao; Chuanzhi Zhao; Lei Hou; Changsheng Li; Aiqin Li; Chuanxi Ma; Xingjun Wang

BackgroundEpigenetic modifications play important roles in plant and animal development. DNA methylation impacts the transposable element (TE) silencing, gene imprinting and expression regulation.ResultsThrough a genome-wide analysis, DNA methylation peaks were characterized and mapped in maize embryo and endosperm genome, respectively. Distinct methylation level was observed across maize embryo and endosperm. The maize embryo genome contained more DNA methylation than endosperm. Totally, 985,478 CG islands (CGIs) were identified and most of them were unmethylated. More CGI shores were methylated than CGIs in maize suggested that DNA methylation level was not positively correlated with CpG density. The promoter sequence and transcriptional termination region (TTR) were more methylated than the gene body (intron and exon) region based on peak number and methylated depth. Result showed that 99% TEs were methylated in maize embryo, but a large portion of them (34.8%) were not methylated in endosperm. Maize embryo and endosperm exhibit distinct pattern/level of methylation. The most differentially methylated region between embryo and endosperm are CGI shores. Our results indicated that DNA methylation is associated with both gene silencing and gene activation in maize. Many genes involved in embryogenesis and seed development were found differentially methylated in embryo and endosperm. We found 41.5% imprinting genes were similarly methylated and 58.5% imprinting genes were differentially methylated between embryo and endosperm. Methylation level was associated with allelic silencing of only a small number of imprinting genes. The expression of maize DEMETER-like (DME-like) gene and MBD101 gene (MBD4 homolog) were higher in endosperm than in embryo. These two genes may be associated with distinct methylation levels across maize embryo and endosperm.ConclusionsThrough MeDIP-seq we systematically analyzed the methylomes of maize embryo and endosperm and results indicated that the global methylation status of embryo was more than that of the endosperm. Differences could be observed at the total number of methylation peaks, DMRs and specific methylated genes which were tightly associated with development of embryo and endosperm. Our results also revealed that many DNA methylation regions didn’t affect transcription of the corresponding genes.


Frontiers in Plant Science | 2016

Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean

Hui Song; Pengfei Wang; Lei Hou; Shuzhen Zhao; Chuanzhi Zhao; Han Xia; Pengcheng Li; Ye Zhang; Xiaotong Bian; Xingjun Wang

WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment.


Journal of Biosciences | 2009

Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.

Meng-Jun Li; Aiqin Li; Han Xia; Chuanzhi Zhao; Changsheng Li; Shu-Bo Wan; Yu-Ping Bi; Xingjun Wang

The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthase (I, II, III), β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.


PLOS ONE | 2013

Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants.

Fengdan Guo; Chuanliang Liu; Han Xia; Yu-Ping Bi; Chuanzhi Zhao; Shu-Zhen Zhao; Lei Hou; Fuguang Li; Xingjun Wang

Arabidopsis LEAFY COTYLEDON (LEC) genes, AtLEC1 and AtLEC2, are important embryonic regulators that play key roles in morphogenesis and maturation phases during embryo development. Ectopic expression of AtLEC1 and AtLEC2 in tobacco caused abnormality in transgenic seedling. When transgenic seeds germinated on medium containing 30 µM DEX, LEC1 transgenic seedlings were ivory and fleshy, with unexpanded cotyledons, stubby hypocotyls, short roots and no obvious callus formation at the shoot meristem position. While LEC2 transgenic seedlings formed embryonic callus on the shoot apical meristem and somatic embryo-like structures emerged from the surface of the callus. When callus were transferred to hormone free MS0 medium more shoots were regenerated from each callus. However, shoot formation was not observed in LEC1 overexpressors. To investigate the mechanisms of LEC2 in somatic embryogenesis, we studied global gene expression by digital gene expression profiling analysis. The results indicated that ectopic expression of LEC2 genes induced accumulation of embryo-specific proteins such as seed storage proteins, late embryogenesis abundant (LEA) proteins, fatty acid biosynthetic enzymes, products of steroid biosynthesis related genes and key regulatory genes of the embryo development. Genes of plant-specific transcription factors such as NAC domain protein, AP2 and GRAS family, resistance-related as well as salicylic acid signaling related genes were up-regulated in LEC2 transgenic seedlings. Ectopi c expression of LEC2 induced large number of somatic embryo formation and shoot regeneration but 20 d DEX induction of LEC1 is not sufficient to induce somatic embryogenesis and shoot formation. Our data provide new information to understand the mechanisms on LEC2 gene’s induction of somatic embryogenesis.


BMC Plant Biology | 2013

Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response.

Quan Zhang; Chuanzhi Zhao; Ming Li; Wei Sun; Yan Liu; Han Xia; Mingnan Sun; Aiqin Li; Changsheng Li; Shuzhen Zhao; Lei Hou; Jean-François Picimbon; Xingjun Wang; Yanxiu Zhao

BackgroundMicroRNAs are key regulators of plant growth and development with important roles in environmental adaptation. The microRNAs from the halophyte species Thellungiella salsuginea (salt cress), which exhibits extreme salt stress tolerance, remain to be investigated. The sequenced genome of T. salsuginea and the availability of high-throughput sequencing technology enabled us to discover the conserved and novel miRNAs in this plant species. It is interesting to identify the microRNAs from T. salsuginea genome wide and study their roles in salt stress response.ResultsIn this study, two T. salsuginea small RNA libraries were constructed and sequenced using Solexa technology. We identified 109 miRNAs that had previously been reported in other plant species. A total of 137 novel miRNA candidates were identified, among which the miR* sequence of 26 miRNAs was detected. In addition, 143 and 425 target mRNAs were predicted for the previously identified and Thellungiella-specific miRNAs, respectively. A quarter of these putative targets encode transcription factors. Furthermore, numerous signaling factor encoding genes, defense-related genes, and transporter encoding genes were amongst the identified targets, some of which were shown to be important for salt tolerance. Cleavage sites of seven target genes were validated by 5’ RACE, and some of the miRNAs were confirmed by qRT-PCR analysis. The expression levels of 26 known miRNAs in the roots and leaves of plants subjected to NaCl treatment were determined by Affymetrix microarray analysis. The expression of most tested miRNA families was up- or down-regulated upon NaCl treatment. Differential response patterns between the leaves and roots were observed for these miRNAs.ConclusionsOur results indicated that diverse set of miRNAs of T. salsuginea were responsive to salt stress and could play an important role in the salt stress response.


Journal of Biosciences | 2011

Isolation and expression analysis of LEA genes in peanut ( Arachis hypogaea L.)

Lei Su; Chuanzhi Zhao; Yu-Ping Bi; Shu-Bo Wan; Han Xia; Xingjun Wang

Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.


Frontiers in Plant Science | 2016

Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

Hui Song; Pengfei Wang; Jer-Young Lin; Chuanzhi Zhao; Yuping Bi; Xingjun Wang

WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.


Frontiers in Plant Science | 2017

Genome-Wide Discovery of Microsatellite Markers from Diploid Progenitor Species, Arachis duranensis and A. ipaensis, and Their Application in Cultivated Peanut (A. hypogaea)

Chuanzhi Zhao; Jingjing Qiu; Gaurav Agarwal; Jiangshan Wang; Xuezhen Ren; Han Xia; Baozhu Guo; Chang-Le Ma; Shu-Bo Wan; David J. Bertioli; Rajeev K. Varshney; Manish K. Pandey; Xingjun Wang

Despite several efforts in the last decade toward development of simple sequence repeat (SSR) markers in peanut, there is still a need for more markers for conducting different genetic and breeding studies. With the effort of the International Peanut Genome Initiative, the availability of reference genome for both the diploid progenitors of cultivated peanut allowed us to identify 135,529 and 199,957 SSRs from the A (Arachis duranensis) and B genomes (Arachis ipaensis), respectively. Genome sequence analysis showed uneven distribution of the SSR motifs across genomes with variation in parameters such as SSR type, repeat number, and SSR length. Using the flanking sequences of identified SSRs, primers were designed for 51,354 and 60,893 SSRs with densities of 49 and 45 SSRs per Mb in A. duranensis and A. ipaensis, respectively. In silico PCR analysis of these SSR markers showed high transferability between wild and cultivated Arachis species. Two physical maps were developed for the A genome and the B genome using these SSR markers, and two reported disease resistance quantitative trait loci (QTLs), qF2TSWV5 for tomato spotted wilt virus (TSWV) and qF2LS6 for leaf spot (LS), were mapped in the 8.135 Mb region of chromosome A04 of A. duranensis. From this genomic region, 719 novel SSR markers were developed, which provide the possibility for fine mapping of these QTLs. In addition, this region also harbors 652 genes and 49 of these are defense related genes, including two NB-ARC genes, three LRR receptor-like genes and three WRKY transcription factors. These disease resistance related genes could contribute to resistance to viral (such as TSWV) and fungal (such as LS) diseases in peanut. In summary, this study not only provides a large number of molecular markers for potential use in peanut genetic map development and QTL mapping but also for map-based gene cloning and molecular breeding.


BMC Plant Biology | 2015

Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages

Chuanzhi Zhao; Shuzhen Zhao; Lei Hou; Han Xia; Jiangshan Wang; Changsheng Li; Aiqin Li; Tingting Li; Xinyou Zhang; Xingjun Wang

BackgroundCultivated peanut (Arachis hypogaea. L) is one of the most important oil crops in the world. After flowering, the peanut plant forms aboveground pegs (gynophores) that penetrate the soil, giving rise to underground pods. This means of reproduction, referred to as geocarpy, distinguishes peanuts from most other plants. The molecular mechanism underlying geocarpic pod development in peanut is poorly understood.ResultsTo gain insight into the mechanism of geocarpy, we extracted proteins from aerial gynophores, subterranean unswollen gynophores, and gynophores that had just started to swell into pods. We analyzed the protein profiles in each of these samples by combining 1 DE with nanoLC-MS/MS approaches. In total, 2766, 2518, and 2280 proteins were identified from the three samples, respectively. An integrated analysis of proteome and transcriptome data revealed specifically or differentially expressed genes in the different developmental stages at both the mRNA and protein levels. A total of 69 proteins involved in the gravity response, light and mechanical stimulus, hormone biosynthesis, and transport were identified as being involved in geocarpy. Furthermore, we identified 91 genes that were specifically or abundantly expressed in aerial gynophores, including pectin methylesterase and expansin, which were presumed to promote the elongation of aerial gynophores. In addition, we identified 35 proteins involved in metabolism, defense, hormone biosynthesis and signal transduction, nitrogen fixation, and transport that accumulated in subterranean unswellen gynophores. Furthermore, 26 specific or highly abundant proteins related to fatty acid metabolism, starch synthesis, and lignin synthesis were identified in the early swelling pods.ConclusionsWe identified thousands of proteins in the aerial gynophores, subterranean gynophores, and early swelling pods of peanut. This study provides the basis for examining the molecular mechanisms underlying peanut geocarpy pod development.


Frontiers in Plant Science | 2017

Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea

Jiangshan Wang; Quan Zhang; Feng Cui; Lei Hou; Shuzhen Zhao; Han Xia; Jingjing Qiu; Tingting Li; Ye Zhang; Xingjun Wang; Chuanzhi Zhao

Low temperature is one of the major environmental stresses that affects plant growth and development, and leads to decrease in crop yield and quality. Thellungiella salsuginea (salt cress) exhibits high tolerance to chilling, is an appropriate model to investigate the molecular mechanisms of cold tolerance. Here, we compared transcription changes in the roots and leaves of T. salsuginea under cold stress using RNA-seq. We identified 2,782 and 1,430 differentially expressed genes (DEGs) in leaves and roots upon cold treatment, respectively. The expression levels of some genes were validated by quantitative real-time-PCR (qRT-PCR). Among these DEGs, 159 (11.1%) genes in roots and 232 (8.3%) genes in leaves were annotated as various types of transcription factors. We found that five aquaporin genes (three TIPs, one PIPs, and one NIPs) responded to cold treatment. In addition, the expression of COR47, ICE1, and CBF1 genes of DREB1/CBF-dependent cold signaling pathway genes altered in response to low temperature. KEGG pathway analysis indicated that these cold regulated genes were enriched in metabolism, photosynthesis, circadian rhythm, and transcriptional regulation. Our findings provided a complete picture of the regulatory network of cold stress response in T. salsuginea. These cold-responsive genes could be targeted for detail functional study and utilization in crop cold tolerance improvement.

Collaboration


Dive into the Chuanzhi Zhao's collaboration.

Top Co-Authors

Avatar

Han Xia

Shandong Normal University

View shared research outputs
Top Co-Authors

Avatar

Xingjun Wang

Shandong Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pengfei Wang

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiangshan Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ping Bi

Shandong Normal University

View shared research outputs
Top Co-Authors

Avatar

Chang-Le Ma

Shandong Normal University

View shared research outputs
Top Co-Authors

Avatar

Hui Song

Qingdao Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge