Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuck T. Chen is active.

Publication


Featured researches published by Chuck T. Chen.


Neurochemistry International | 2009

Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: an in situ cerebral perfusion study.

Mélissa Ouellet; Vincent Emond; Chuck T. Chen; Carl Julien; Fanchon Bourasset; Salvatore Oddo; Frank M. LaFerla; Richard P. Bazinet; Frédéric Calon

Docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids are n-3 polyunsaturated fatty acids with a therapeutic potential for CNS diseases. Here, using an in situ brain perfusion technique in mice, we show that [(14)C]-DHA and [(14)C]-EPA readily cross the mouse blood-brain barrier (BBB) with brain transport coefficients (Clup) of 48+/-3microlg(-1)s(-1) and 52+/-4microlg(-1)s(-1), respectively. Mechanical capillary depletion of brain homogenates showed that less than 10% of [(14)C]-DHA or [(14)C]-EPA remained in endothelial cells of the brain vasculature, demonstrating that both molecules fully crossed the BBB. Addition of bovine serum albumin decreased the Clup of [(14)C]-DHA to 0.6+/-0.3microlg(-1)s(-1), indicating that binding to albumin reduced importantly, but not totally, the passage of DHA through the BBB. The Clup of [(14)C]-DHA or [(14)C]-EPA was not saturable at concentration up to 100microM, suggesting that these compounds crossed the BBB by simple diffusion. However, long-term high-DHA dietary consumption reduced the Clup of [(14)C]-DHA to 33+/-6microlg(-1)s(-1) (-20%, p<0.01). These results confirm that the brain uptake of DHA or EPA perfused with a physiological buffer is comparable to highly diffusible drugs like diazepam, and can be modulated by albumin binding and chronic dietary DHA intake.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2009

Rapid β-oxidation of eicosapentaenoic acid in mouse brain: An in situ study

Chuck T. Chen; Zhen Liu; Mélissa Ouellet; Frédéric Calon; Richard P. Bazinet

Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly beta-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either (14)C-EPA or (14)C-DHA via in situ cerebral perfusion for 40s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. (14)C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (V(D), microl/g) was calculated. The V(D) between (14)C-EPA- and (14)C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the V(D) of (14)C-EPA in the aqueous fraction was 2.5 times higher than that of (14)C-DHA (p=0.025), suggesting a more extensive beta-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from (14)C-EPA but not from (14)C-DHA-perfused mice suggesting that beta-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid beta-oxidation upon uptake by the brain.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2008

Regulation of brain polyunsaturated fatty acid uptake and turnover

Chuck T. Chen; Joshua T. Green; Sarah K. Orr; Richard P. Bazinet

The brain is particularly enriched in glycerophospholipids with either arachidonic or docosahexaenoic acid esterified in the stereospecifically numbered-2 position. In this paper, we review how combining a kinetic approach to study the uptake and turnover of arachidonic and docosahexaenoic acids within brain phospholipids of unanesthetized rats, along with chronic administration of antimanic drugs (lithium, valproate and carbamazepine), have advanced our understanding of how polyunsaturated fatty acids (PUFA) enter the brain, and the mechanisms that regulate their turnover within brain phospholipids. The incorporation rates of arachidonic and docosahexaenoic acid from the plasma unesterified pool into brain phospholipids closely approximate independent measures of their consumption rates by the brain, suggesting this is quantitatively the major pool for uptake of these PUFA. Antimanic drugs (lithium and carbamazepine) that downregulate the activity of the calcium-dependent cytosolic phospholipase A(2) (cPLA(2)) transcription factor AP-2, and in turn the expression and activity of cPLA(2,) lead to a selective downregulation in brain arachidonic acid turnover. Furthermore, targeting arachidonoyl-CoA formation via ordered, non-competitive inhibition of an acyl-CoA synthetase with valproate also selectively decreases brain arachidonic acid turnover. Drugs that increase brain cPLA(2) activity (N-methyl-d-aspartic acid and fluoxetine) are correlated with increased turnover of arachidonic acid in brain phospholipids. Altered PUFA metabolism has been implicated in several neurological disorders, including bipolar disorder and Alzheimers disease. Identifying the enzymes that regulated brain PUFA metabolism could lead to new therapeutic approaches for these disorders.


Journal of Lipid Research | 2008

The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations

Chuck T. Chen; David W.L. Ma; John H. Kim; Howard T.J. Mount; Richard P. Bazinet

The brain cannot synthesize n-6 or n-3 PUFAs de novo and requires their transport from the blood. Two models of brain fatty acid uptake have been proposed. One requires the passive diffusion of unesterified fatty acids through endothelial cells of the blood-brain barrier, and the other requires the uptake of lipoproteins via a lipoprotein receptor on the luminal membrane of endothelial cells. This study tested whether the low density lipoprotein receptor (LDLr) is necessary for maintaining brain PUFA concentrations. Because the cortex has a low basal expression of LDLr and the anterior brain stem has a relatively high expression, we analyzed these regions separately. LDLr knockout (LDLr−/−) and wild-type mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem (pons and medulla) were isolated for phospholipid fatty acid analyses. There were no differences in phosphatidylserine, phosphatidylinositol, ethanolamine, or choline glycerophospholipid esterified PUFA or saturated or monounsaturated fatty acid concentrations in the cortex or brain stem between LDLr−/− and wild-type mice. These findings demonstrate that the LDLr is not necessary for maintaining brain PUFA concentrations and suggest that other mechanisms to transport PUFAs into the brain must exist.


Journal of Neurochemistry | 2011

Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study.

Chuck T. Chen; Zhen Liu; Richard P. Bazinet

J. Neurochem. (2011) 116, 363–373.


Journal of Lipid Research | 2014

Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats

Anthony F. Domenichiello; Chuck T. Chen; Marc-Olivier Trépanier; P. Mark Stavro; Richard P. Bazinet

Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.


Journal of Lipid Research | 2013

The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms

Chuck T. Chen; Anthony F. Domenichiello; Marc-Olivier Trépanier; Zhen Liu; Mojgan Masoodi; Richard P. Bazinet

Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of 14C-palmitate, 14C-DHA, or 14C-EPA. MEP reduced the radioactivity of brain aqueous fractions for 14C-palmitate-, 14C-EPA-, and 14C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.


Scientific Reports | 2015

Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain.

Chuck T. Chen; Alex P. Kitson; Kathryn E. Hopperton; Anthony F. Domenichiello; Marc-Olivier Trépanier; Lauren E. Lin; Leonardo Ermini; Martin Post; Frank Thies; Richard P. Bazinet

Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.


Journal of Lipid Research | 2013

Whole body synthesis rates of docosahexaenoic acid (DHA) from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

Anthony F. Domenichiello; Chuck T. Chen; Marc-Olivier Trépanier; P. Mark Stavro; Richard P. Bazinet

Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2015

β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels

Chuck T. Chen; Richard P. Bazinet

The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels.

Collaboration


Dive into the Chuck T. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Liu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge