Chuian-Fu Ken
National Changhua University of Education
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chuian-Fu Ken.
BMC Genomics | 2012
Yu-Tin Chen; Hwei-Ling Peng; Wei-Chung Shia; Fang-Rong Hsu; Chuian-Fu Ken; Yu-Ming Tsao; Chang-Hua Chen; Chun-Eng Liu; Ming-Feng Hsieh; Huang-Chi Chen; Chuan Yi Tang; Tien-Hsiung Ku
BackgroundThe opportunistic enterobacterium, Morganella morganii, which can cause bacteraemia, is the ninth most prevalent cause of clinical infections in patients at Changhua Christian Hospital, Taiwan. The KT strain of M. morganii was isolated during postoperative care of a cancer patient with a gallbladder stone who developed sepsis caused by bacteraemia. M. morganii is sometimes encountered in nosocomial settings and has been causally linked to catheter-associated bacteriuria, complex infections of the urinary and/or hepatobiliary tracts, wound infection, and septicaemia. M. morganii infection is associated with a high mortality rate, although most patients respond well to appropriate antibiotic therapy. To obtain insights into the genome biology of M. morganii and the mechanisms underlying its pathogenicity, we used Illumina technology to sequence the genome of the KT strain and compared its sequence with the genome sequences of related bacteria.ResultsThe 3,826,919-bp sequence contained in 58 contigs has a GC content of 51.15% and includes 3,565 protein-coding sequences, 72 tRNA genes, and 10 rRNA genes. The pathogenicity-related genes encode determinants of drug resistance, fimbrial adhesins, an IgA protease, haemolysins, ureases, and insecticidal and apoptotic toxins as well as proteins found in flagellae, the iron acquisition system, a type-3 secretion system (T3SS), and several two-component systems. Comparison with 14 genome sequences from other members of Enterobacteriaceae revealed different degrees of similarity to several systems found in M. morganii. The most striking similarities were found in the IS4 family of transposases, insecticidal toxins, T3SS components, and proteins required for ethanolamine use (eut operon) and cobalamin (vitamin B12) biosynthesis. The eut operon and the gene cluster for cobalamin biosynthesis are not present in the other Proteeae genomes analysed. Moreover, organisation of the 19 genes of the eut operon differs from that found in the other non-Proteeae enterobacterial genomes.ConclusionsThis is the first genome sequence of M. morganii, which is a clinically relevant pathogen. Comparative genome analysis revealed several pathogenicity-related genes and novel genes not found in the genomes of other members of Proteeae. Thus, the genome sequence of M. morganii provides important information concerning virulence and determinants of fitness in this pathogen.
Fish & Shellfish Immunology | 2009
Chi-Tsai Lin; Wen-Chung Tseng; Nai-Wan Hsiao; Hsiao-Huang Chang; Chuian-Fu Ken
A 977 bp cDNA containing an open reading frame encoding 224 amino acid residues of manganese superoxide dismutase was cloned from zebrafish (zMn-SOD). The deduced amino acid sequence showed high identity with the sequences of Mn-SODs from human (85.1%) to nematode (61.6%). The 3-D structure model was superimposed on the relative domains of human Mn-SOD with the root mean square (rms) deviation of 0.0919 A. The recombinant mature zMn-SOD with enzyme activity was purified using His-tag technique. The half-life of the enzyme is approximately 48 min and its thermal inactivation rate constant k(d) is 0.0154 min(-1)at 70 degrees C. The enzyme was active under a broad pH (2.2-11.2) and in the presence of up to 4% SDS. Real-time RT-PCR assay was used to detect the zMn-SOD mRNA expression during the developmental stages following a challenge with paraquat. A high level expression of Mn-SOD mRNA was detected at the cleavage stage, but decreased significantly under paraquat treatment. The results indicated that Mn-SOD plays an important role during embryonic development.
Journal of Agricultural and Food Chemistry | 2009
Chuian-Fu Ken; Choa-Yi Lin; Yu-Chi Jiang; Lisa Wen; Chi-Tsai Lin
Glutaredoxins (Grxs) play important roles in the reduction of disulfides via reduced glutathione as a reductant. A cDNA (503 bp, EU193660) encoding a putative Grx was cloned from Taiwanofugus camphorata (Tc). The deduced amino acid sequence is conserved among the reported dithiol Grxs. A 3D homology structure was created for this TcGrx. To characterize the TcGrx enzyme, the coding region was subcloned into an expression vector pET-20b(+) and transformed into Escherichia coli . Functional TcGrx was expressed and purified by Ni(2+)-nitrilotriacetic acid Sepharose. The purified enzyme showed bands of approximately 15 kDa on 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The TcGrx encodes a protein possessing both Grx and dehydroascorbate reductase (DHAR) activity. The Michaelis constant (K(m)) values for beta-hydroxyethyl disulfide (HED) and dehydroascorbate (DHA) were 0.57 and 1.85 mM, respectively. The half-life of deactivation of the protein at 100 degrees C was 8.5 min, and its thermal inactivation rate constant K(d) was 6.52 x 10(-2) min(-1). The enzyme was active under a broad pH range from 6.0 to 10.0 and in the presence of imidazole up to 0.4 M. The enzyme was susceptible to SDS denaturation and protease degradation/inactivation.
Journal of Agricultural and Food Chemistry | 2011
Chuian-Fu Ken; I-Jing Chen; Chao-Ting Lin; Shiu-Mei Liu; Lisa Wen; Chi-Tsai Lin
Glutaredoxins (Grxs) play important roles in the redox system via reduced glutathione as a reductant. A TcmonoGrx cDNA (1039 bp, EU158772) encoding a putative monothiol Grx was cloned from Taiwanofungus camphorata (formerly named Antrodia camphorata). The deduced amino acid sequence is conserved among the reported monothiol Grxs. Two 3-D homology structures of the TcmonoGrx based on known structures of human Grx3 (pdb: 2DIY_A) and Mus musculus Grx3 (pdb: 1WIK_A) have been created. To characterize the TcmonoGrx protein, the coding region was subcloned into an expression vector pET-20b(+) and transformed into E. coli C41(DE3). The recombinant His6-tagged TcmonoGrx was overexpressed and purified by Ni(2+)-nitrilotriacetic acid Sepharose. The purified enzyme showed a predominant band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited glutathione reductase (GR) activity via dithionitrobenzoate (DTNB) assay. The Michaelis constant (K(M)) values for GSSG and NADPH were 0.064 and 0.041 mM, respectively. The enzymes half-life of deactivation at 60 °C was 10.5 min, and its thermal inactivation rate constant (k(d)) was 5.37 × 10(-2) min(-1). The enzyme was active under a broad pH range from 6 to 8. The enzyme retained 50% activity after trypsin digestion at 37 °C for 40 min. Both mutants C(40)→S(40) and C(165)→S(165) lost 40-50% GR activity, whereas the mutant S(168)→C(168) showed a 20% increase in its GR activity.
International Journal of Molecular Sciences | 2014
Chuian-Fu Ken; Chih-Yu Huang; Lisa Wen; Jenq-Kuen Huang; Chi-Tsai Lin
Glutathione-dependent formaldehyde dehydrogenase (GFD) from Taiwanofungus camphorata plays important roles in formaldehyde detoxification and antioxidation. The enzyme is bifunctional. In addition to the GFD activity, it also functions as an effective S-nitrosoglutathione reductase (GSNOR) against nitrosative stress. We investigated the modulation of HEK (human embryonic kidney) 293T cells under nitrosative stress by transfecting a codon optimized GFD cDNA from Taiwanofungus camphorata (Tc-GFD-O) to these cells. The parental and transfected HEK 293T cells were then subjected to S-nitrosoglutathione treatment to induce nitrosative stress. The results showed that in Tc-GFD-O-transfected 293T cells, the expression and activity of GFD increased. Additionally, these cells under the nitrosative stress induced by S-nitrosoglutathione showed both higher viability and less apoptosis than the parental 293T cells. This finding suggests that the Tc-GFD-O in HEK 293T cells may provide a protective function under nitrosative stress.
Fish & Shellfish Immunology | 2017
Chuian-Fu Ken; Chieh-Ning Chen; Chen-Hung Ting; Chieh-Yu Pan; Jyh-Yih Chen
ABSTRACT Streptococcus agalactiae infection is one of the most significant bacterial diseases in tilapia aquaculture. Identification of immune‐related genes associated with Streptococcus agalactiae infection may provide a basis for breeding selection or therapeutics to augment disease resistance. Therefore, we utilized transcriptome profiling to study the host response in tilapia following Streptococcus agalactiae infection. Based on GO and KEGG enrichment analyses, we found that differentially expressed genes are widely involved in immune‐related pathways, including the induction of antimicrobial peptides. Moreover, the main components of two immune‐related pathways (Toll‐like receptor signaling and leukocyte transendothelial migration) and four environmental information processing pathways (TNF, PI3K‐Akt, Jak‐STAT and MAPK) were identified. Finally, a time‐course expression profile for several of the identified transcripts including tilapia piscidin 3 (TP3), tilapia piscidin 4 (TP4), TLR2, TLR5, MyD88, TRAF6, p38, and interleukin components was performed by qRT‐PCR. Collectively, these results provide a starting point to study molecular mechanisms of tilapia immune response to Streptococcus agalactiae infection and may be applied as a basis for developing disease resistant strains by breeding selection. HighlightsTranscriptome analysis of hybrid tilapia revealed changes in immune gene expression after Streptococcus agalactiae infection.The Toll‐like receptors pathway‐mediated induction of NADPH oxidase complex and piscidin, suggesting as primary immune‐related responses.These results provide a starting point to study molecular mechanisms of tilapia immune response to Streptococcus agalactiae infection.
Journal of Agricultural and Food Chemistry | 2010
Chih-Yu Huang; Chuian-Fu Ken; Hsiang-Hui Chi; Lisa Wen; Chi-Tsai Lin
A cDNA encoding putative thioredoxin reductase (TR) was identified from a medicinal mushroom, Taiwanofungus camphorata (T. camphorata). Alignment of the deduced amino acid sequence with TRs from other organisms showed high levels of identity (59-74%). A three-dimensional (3-D) homology structure was created for this TR. Functional T. camphorata TR (TcTR) was overexpressed in yeast and purified. The purified enzyme showed a monomic form on a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzymes half-life of deactivation at 60 degrees C was 12.9 min, and its thermal inactivation rate constant K(d) was 5.37 x 10(-2) min(-1). The optimal pH for the enzyme was pH 8 and retained about 76% activity in the presence of 0.1 M imidazole. The enzyme showed 50% activity after 10 min of incubation at 37 degrees C with chymotrypsin. The Michaelis constant (K(m)) value for dithionitrobenzoate (DTNB) was 1.59 mM.
Biomedical Optics Express | 2013
Yu-Chung Chang; Chuian-Fu Ken; Che-Wei Hsu; Ya-Ging Liu
Superoxide anion is the key radical that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express yellow fluorescent proteins, a reversible superoxide-specific indicator, in the liver and used a fiber-optic fluorescent probe to noninvasively monitor the superoxide concentration in real time. Several superoxide-inducing and scavenging reagents were administrated onto the fish to alter superoxide concentrations. The distinct biochemical pathways of the reagents can be discerned from the transient behaviors of fluorescence time courses. These results demonstrate the feasibility of this method for analyzing superoxide dynamics and its potential as an in vivo pharmaceutical screening platform.
Proceedings of SPIE | 2014
Yu-Chung Chang; Chuian-Fu Ken; Che-Wei Hsu; Ya-Ging Liu
Superoxide anion is the primary oxygen free radical generated in mitochondria that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express fluorescent proteins, which are recently developed as reversible superoxide-specific indicators, in the liver. A fiber-optic fluorescent probe was used to noninvasively monitor superoxide generation in the liver in real time. The fish were placed in microfluidic channels for manipulation and reagents administration. Several superoxide-inducing and scavenging reagents were administrated onto the fish to investigate their effects on superoxide anion balancing. The biochemical dynamics of superoxide due to the application reagents were revealed in the transient behaviors of fluorescence time courses. With the ability to monitor superoxide dynamics in vivo in real time, this method can be used as an in vivo pharmaceutical screening platform.
ieee international conference on advanced infocomm technology | 2013
Yu-Chung Chang; Che-Wei Hsu; Hsu-Fu Chang; Chuian-Fu Ken; Ya-Ging Liu
The genetic feature of zebrafish is similar to that of mammal, which renders zebrafish an emerging animal model for biotechnology. A recently discovered circularly permuted yellow fluorescent protein (cpYFP) is a superoxide-specific indicator. We specifically transfect the cpYFP into the liver of zebrafish and use a fiber-optic fluorescent probe to conduct noninvasive monitoring of superoxide concentrations in the fish liver in vivo in real time. Several superoxide-generating and scavenging reagents are tested. The time courses of superoxide concentration variations are presented. This technique can be used as a high throughput pharmaceutical test platform.