ChulHee Kang
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by ChulHee Kang.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Wei Wang; Iva Perovic; Johnathan Chittuluru; Alice Kaganovich; Linh T. T. Nguyen; Jingling Liao; Jared R. Auclair; Derrick E. Johnson; Anuradha Landeru; Alana K. Simorellis; Shulin Ju; Mark R. Cookson; Francisco J. Asturias; Jeffrey N. Agar; Brian N. Webb; ChulHee Kang; Dagmar Ringe; Gregory A. Petsko; Thomas C. Pochapsky; Quyen Q. Hoang
A heterologously expressed form of the human Parkinson disease-associated protein α-synuclein with a 10-residue N-terminal extension is shown to form a stable tetramer in the absence of lipid bilayers or micelles. Sequential NMR assignments, intramonomer nuclear Overhauser effects, and circular dichroism spectra are consistent with transient formation of α-helices in the first 100 N-terminal residues of the 140-residue α-synuclein sequence. Total phosphorus analysis indicates that phospholipids are not associated with the tetramer as isolated, and chemical cross-linking experiments confirm that the tetramer is the highest-order oligomer present at NMR sample concentrations. Image reconstruction from electron micrographs indicates that a symmetric oligomer is present, with three- or fourfold symmetry. Thermal unfolding experiments indicate that a hydrophobic core is present in the tetramer. A dynamic model for the tetramer structure is proposed, based on expected close association of the amphipathic central helices observed in the previously described micelle-associated “hairpin” structure of α-synuclein.
Nature Structural & Molecular Biology | 1998
S Wang; W.R Trumble; H Liao; C.R Wesson; A.K Dunker; ChulHee Kang
Calsequestrin, the major Ca2+ storage protein of muscle, coordinately binds and releases 40–50 Ca2+ ions per molecule for each contraction-relaxation cycle by an uncertain mechanism. We have determined the structure of rabbit skeletal muscle calsequestrin. Three very negative thioredoxin-like domains surround a hydrophilic center. Each monomer makes two extensive dimerization contacts, both of which involve the approach of many negative groups. This structure suggests a mechanism by which calsequestrin may achieve high capacity Ca2+ binding. The suggested mechanism involves Ca2+-induced collapse of the three domains and polymerization of calsequestrin monomers arising from three factors: N-terminal arm exchange, helix–helix contacts and Ca2+ cross bridges. This proposed structure-based mechanism accounts for the observed coupling of high capacity Ca2+ binding with protein precipitation.
Proceedings of the National Academy of Sciences of the United States of America | 2002
HaJeung Park; Kaijiang Zhang; Yingjie Ren; Sourena Nadji; Nanda Sinha; John-Stephen Taylor; ChulHee Kang
It is well known that exposure to UV induces DNA damage, which is the first step in mutagenesis and a major cause of skin cancer. Among a variety of photoproducts, cyclobutane-type pyrimidine photodimers (CPD) are the most abundant primary lesion. Despite its biological importance, the precise relationship between the structure and properties of DNA containing CPD has remained to be elucidated. Here, we report the free (unbound) crystal structure of duplex DNA containing a CPD lesion at a resolution of 2.0 Å. Our crystal structure shows that the overall helical axis bends ≈30° toward the major groove and unwinds ≈9°, in remarkable agreement with some previous theoretical and experimental studies. There are also significant differences in local structure compared with standard B-DNA, including pinching of the minor groove at the 3′ side of the CPD lesion, a severe change of the base pair parameter in the 5′ side, and serious widening of both minor and major groves both 3′ and 5′ of the CPD. Overall, the structure of the damaged DNA differs from undamaged DNA to an extent that DNA repair proteins may recognize this conformation, and the various components of the replicational and transcriptional machinery may be interfered with due to the perturbed local and global structure.
Proceedings of the National Academy of Sciences of the United States of America | 2007
David Hyatt; BuHyun Youn; Yuxin Zhao; Bindu Santhamma; Robert M. Coates; Rodney Croteau; ChulHee Kang
The crystal structure of (4S)-limonene synthase from Mentha spic ata, a metal ion-dependent monoterpene cyclase that catalyzes the coupled isomerization and cyclization of geranyl diphosphate, is reported at 2.7-Å; resolution in two forms liganded to the substrate and intermediate analogs, 2-fluorogeranyl diphosphate and 2-fluorolinalyl diphosphate, respectively. The implications of these findings are described for domain interactions in the homodimer and for changes in diphosphate–metal ion coordination and substrate binding conformation in the course of the multistep reaction.
Genetics | 2008
Ana Saballos; Gebisa Ejeta; Emiliano J. Sanchez; ChulHee Kang; Wilfred Vermerris
The content and composition of the plant cell wall polymer lignin affect plant fitness, carbon sequestration potential, and agro-industrial processing. These characteristics, are heavily influenced by the supply of hydroxycinnamyl alcohol precursors synthesized by the enzyme cinnamyl alcohol dehydrogenase (CAD). In angiosperms, CAD is encoded by a multigene family consisting of members thought to have distinct roles in different stages of plant development. Due to the high sequence similarity among CAD genes, it has been challenging to identify and study the role of the individual genes without a genome sequence. Analysis of the recently released sorghum genome revealed the existence of 14 CAD-like genes at seven genomic locations. Comparisons with maize and rice revealed subtle differences in gene number, arrangement, and expression patterns. Sorghum CAD2 is the predominant CAD involved in lignification based on the phylogenetic relationship with CADs from other species and genetic evidence showing that a set of three allelic brown midrib (bmr) lignin mutants contained mutations in this gene. The impact of the mutations on the structure of the protein was assessed using molecular modeling based on X-ray crystallography data of the closely related Arabidopsis CAD5. The modeling revealed unique changes in structure consistent with the observed phenotypes of the mutants.
Journal of Biological Chemistry | 2007
Man-Ho Cho; Oliver R. A. Corea; Hong Yang; Diana L. Bedgar; Dhrubojyoti D. Laskar; Aldwin M. Anterola; Frances Anne Moog-Anterola; Rebecca L. Hood; Susanne E. Kohalmi; Mark A. Bernards; ChulHee Kang; Laurence B. Davin; Norman G. Lewis
There is much uncertainty as to whether plants use arogenate, phenylpyruvate, or both as obligatory intermediates in Phe biosynthesis, an essential dietary amino acid for humans. This is because both prephenate and arogenate have been reported to undergo decarboxylative dehydration in plants via the action of either arogenate (ADT) or prephenate (PDT) dehydratases; however, neither enzyme(s) nor encoding gene(s) have been isolated and/or functionally characterized. An in silico data mining approach was thus undertaken to attempt to identify the dehydratase(s) involved in Phe formation in Arabidopsis, based on sequence similarity of PDT-like and ACT-like domains in bacteria. This data mining approach suggested that there are six PDT-like homologues in Arabidopsis, whose phylogenetic analyses separated them into three distinct subgroups. All six genes were cloned and subsequently established to be expressed in all tissues examined. Each was then expressed as a Nus fusion recombinant protein in Escherichia coli, with their substrate specificities measured in vitro. Three of the resulting recombinant proteins, encoded by ADT1 (At1g11790), ADT2 (At3g07630), and ADT6 (At1g08250), more efficiently utilized arogenate than prephenate, whereas the remaining three, ADT3 (At2g27820), ADT4 (At3g44720), and ADT5 (At5g22630) essentially only employed arogenate. ADT1, ADT2, and ADT6 had kcat/Km values of 1050, 7650, and 1560 m-1 s-1 for arogenate versus 38, 240, and 16 m-1 s-1 for prephenate, respectively. By contrast, the remaining three, ADT3, ADT4, and ADT5, had kcat/Km values of 1140, 490, and 620 m-1 s-1, with prephenate not serving as a substrate unless excess recombinant protein (>150 μg/assay) was used. All six genes, and their corresponding proteins, are thus provisionally classified as arogenate dehydratases and designated ADT1–ADT6.
Journal of Biological Chemistry | 2003
Tongpil Min; Hiroyuki Kasahara; Diana L. Bedgar; BuHyun Youn; Paulraj K. Lawrence; David R. Gang; Steven C. Halls; HaJeung Park; Jacqueline L. Hilsenbeck; Laurence B. Davin; Norman G. Lewis; ChulHee Kang
Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 Å resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous α/β NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.
Plant Journal | 2012
Ana Saballos; Scott E. Sattler; Emiliano J. Sanchez; Timothy P. Foster; Zhanguo Xin; ChulHee Kang; Jeffrey F. Pedersen; Wilfred Vermerris
Successful modification of plant cell-wall composition without compromising plant integrity is dependent on being able to modify the expression of specific genes, but this can be very challenging when the target genes are members of multigene families. 4-coumarate:CoA ligase (4CL) catalyzes the formation of 4-coumaroyl CoA, a precursor of both flavonoids and monolignols, and is an attractive target for transgenic down-regulation aimed at improving agro-industrial properties. Inconsistent phenotypes of transgenic plants have been attributed to variable levels of down-regulation of multiple 4CL genes. Phylogenetic analysis of the sorghum genome revealed 24 4CL(-like) proteins, five of which cluster with bona fide 4CLs from other species. Using a map-based cloning approach and analysis of two independent mutant alleles, the sorghum brown midrib2 (bmr2) locus was shown to encode 4CL. In vitro enzyme assays indicated that its preferred substrate is 4-coumarate. Missense mutations in the two bmr2 alleles result in loss of 4CL activity, probably as a result of improper folding as indicated by molecular modeling. Bmr2 is the most highly expressed 4CL in sorghum stems, leaves and roots, both at the seedling stage and in pre-flowering plants, but the products of several paralogs also display 4CL activity and compensate for some of the lost activity. The contribution of the paralogs varies between developmental stages and tissues. Gene expression assays indicated that Bmr2 is under auto-regulatory control, as reduced 4CL activity results in over-expression of the defective gene. Several 4CL paralogs are also up-regulated in response to the mutation.
FEBS Letters | 1997
Gordon Webster; Jochen Genschel; Ute Curth; Claus Urbanke; ChulHee Kang; Rolf Hilgenfeld
The crystal structure of the DNA‐binding domain of E. coli SSB (EcoSSB) has been determined to a resolution of 2.5 Å. This is the first reported structure of a prokaryotic SSB. The structure of the DNA‐binding domain of the E. coli protein is compared to that of the human mitochondrial SSB (HsmtSSB). In spite of the relatively low sequence identity between them, the two proteins display a high degree of structural similarity. EcoSSB crystallises with two dimers in the asymmetric unit, unlike HsmtSSB which contains only a dimer. This is probably a consequence of the different polypeptide chain lengths in the EcoSSB heterotetramer. Crucial differences in the dimer‐dimer interface of EcoSSB may account for the inability of EcoSSB and HsmtSSB to form cross‐species heterotetramers, in contrast to many bacterial SSBs.
Molecular Microbiology | 2004
Jacqueline L. Hilsenbeck; HaJeung Park; Gregory J. Chen; BuHyun Youn; Kathleen Postle; ChulHee Kang
Colicin B (55 kDa) is a cytotoxic protein that recognizes the outer membrane transporter, FepA, as a receptor and, after gaining access to the cytoplasmic membranes of sensitive Escherichia coli cells, forms a pore that depletes the electrochemical potential of the membrane and ultimately results in cell death. To begin to understand the series of dynamic conformational changes that must occur as colicin B translocates from outer membrane to cytoplasmic membrane, we report here the crystal structure of colicin B at 2.5 Å resolution. The crystal belongs to the space group C2221 with unit cell dimensions a = 132.162 Å, b = 138.167 Å, c = 106.16 Å. The overall structure of colicin B is dumbbell shaped. Unlike colicin Ia, the only other TonB‐dependent colicin crystallized to date, colicin B does not have clearly structurally delineated receptor‐binding and translocation domains. Instead, the unique N‐terminal lobe of the dumbbell contains both domains and consists of a large (290 residues), mostly β‐stranded structure with two short α‐helices. This is followed by a single long (≈ 74 Å) helix that connects the N‐terminal domain to the C‐terminal pore‐forming domain, which is composed of 10 α‐helices arranged in a bundle‐type structure, similar to the pore‐forming domains of other colicins. The TonB box sequence at the N‐terminus folds back to interact with the N‐terminal lobe of the dumbbell and leaves the flanking sequences highly disordered. Comparison of sequences among many colicins has allowed the identification of a putative receptor‐binding domain.