Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chulkyu Park is active.

Publication


Featured researches published by Chulkyu Park.


Instrumentation Science & Technology | 2017

Industrial x-ray inspection system with improved image characterization using blind deblurring based on compressed-sensing scheme

Kyuseok Kim; Soyoung Park; Guna Kim; Hyosung Cho; Uikyu Je; Chulkyu Park; Hyunwoo Lim; Hunwoo Lee; Dongyeon Lee; Yeonok Park; Taeho Woo

ABSTRACT An industrial x-ray inspection system has recently established by our group to examine large and dense objects available in industry. It consists of an industrial x-ray generator having a tube voltage of 450 kV and a focal spot size of 1 mm, a flat-panel detector having a pixel size of 200 µm and a pixel dimension of 2048 × 2048, and a mechanical support for object’s installation. For improving the image characteristics of the system, an effective blind deblurring method based on compressed-sensing scheme is reported. Blind deblurring is the image restoration by estimating the original image and the degradation mechanism using partial information on both. Compressed-sensing is a relatively new mathematical theory for solving the inverse problems. Systematic measurements were performed and the image characteristics of the restored images were quantitatively evaluated using several image-quality indicators. The results demonstrate that the deblurring method is effective for industrial x-ray inspection systems.


Research in Nondestructive Evaluation | 2018

Feasibility Study for Improving the Image Characteristics in Digital Tomosynthesis (DTS) Using a Compressed-Sensing (Cs)-Based Pre-Deblurring Scheme

Kyuseok Kim; Soyoung Park; Guna Kim; Hyosung Cho; Uikyu Je; Chulkyu Park; Hyunwoo Lim; Dongyeon Lee; Hunwoo Lee; Yeonok Park; Taeho Woo

ABSTRACT Digital tomosynthesis (DTS) has been widely used in both industrial nondestructive testing and medical x-ray imaging as a popular multiplanar imaging modality. However, although it provides some of the tomographic benefits of computed tomography (CT) at reduced dose and imaging time, the image characteristics are relatively poor due to blur artifacts originated from incomplete data sampling for a limited angular range and also aspects inherent to imaging system, including finite focal spot size of the x-ray source, detector resolution, etc. In this work, in order to overcome these difficulties, we propose an intuitive method in which a compressed-sensing (CS)-based deblurring scheme is applied to the projection images before common DTS reconstruction. We implemented the proposed deblurring algorithm and performed a systematic experiment to demonstrate its viability for improving the image characteristics in DTS. According to our results, the proposed method appears to be effective for the blurring problems in DTS and seems to be promising to our ongoing application to x-ray nondestructive testing.


Medical & Biological Engineering & Computing | 2018

A new software scheme for scatter correction based on a simple radiographic scattering model

Kyung-Sup Kim; S.Y. Kang; Woo Joo Kim; Chulkyu Park; Duk-Chul Lee; H. Cho; Woong Chol Kang; Sung-Bin Park; Gyuri Kim; Hyunwoo Lim; H. Lee; J. Park; D.H. Jeon; Y.H. Lim; Taeho Woo; J. Oh

AbstractIn common radiography, image contrast is often limited due mainly to scattered x-rays and noise, decreasing the quantitative usefulness of x-ray images. Several scatter reduction methods based on software correction schemes have been extensively investigated in an attempt to overcome these difficulties, most of which are based on measurement, mathematical-physical modeling, or a combination of both. However, those methods require special equipment, system geometry, and extra manual work to measure scatter characteristics. In this study, we investigated a new software scheme for scatter correction based on a simple radiographic scattering model where the intensity of the scattered x-rays was directly estimated from a single x-ray image using a weighted l1-norm contextual regularization framework. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. We also conducted some clinical image studies using patient’s image data of breast and L-spine to verify the clinical effectiveness of the proposed scheme. Our results indicate that the degradation of image characteristics by scattered x-rays and noise was effectively recovered by using the proposed software scheme, thus improving radiographic visibility considerably. Graphical abstractThe schematic illustrations of scatter suppression methods by using a an antiscatter grid and b a scatter estimation algorithm.


Computers in Biology and Medicine | 2018

Eliminating artifacts in single-grid phase-contrast x-ray imaging for improving image quality.

Han-Seung Lee; H.W. Lim; D.H. Jeon; Chulkyu Park; Duk-Chul Lee; H. Cho; Changwoo Seo; Kir-Young Kim; Guna Kim; Sung-Bin Park; S.Y. Kang; J.E. Park; W.S. Kim; Y.H. Lim; Taeho Woo

In this study, we propose a modification to a single-grid phase-contrast x-ray imaging (PCXI) system using a Fourier domain analysis technique to extract absorption, scattering, and differential phase-contrast images. The proposed modification is to rotate the x-ray grid in the image plane to achieve spectral separation between the desired information and the moiré artifact, which is introduced by the superposition of the periodic image of the grid shadow and the periodic sampling by the detector. In addition, we performed some system optimization by adjusting distances between source, object, grid, and detector to further improve image quality. This optimization aimed to increase the spectral spacing between the primary spectrum (lower frequency) and the harmonics of the spectrum (higher frequency) used to extract the various image contrasts. The table-top setup used in the experiment consisted of a focused-linear grid with a 200-lines/inch strip density, a microfocus x-ray tube with a 55-μm focal spot size, and a CMOS flat-panel detector with a 49.5-μm pixel size. The x-ray grid was rotated at 27.8° with respect to the detector and the sample was placed as close as possible to the x-ray tube. Our results indicated that the proposed method effectively eliminated the PCXI artifacts, thus improving image quality.


Journal of the Korean Physical Society | 2017

Erratum to: Branch length similarity entropy-based descriptors for shape representation (Journal of the Korean Physical Society, (2017), 71, 10, (727-732), 10.3938/jkps.71.593)

Dong Hee Shin; Jin Hyuck Heo; Sang Hyuk Im; Rena Lee; Kyubo Kim; Samju Cho; Sangwook Lim; Suk Lee; Jang Bo Shim; Hyun Do Huh; Sang Hoon Lee; Sohyun Ahn; Ashadun Nobi; Jae Woo Lee; Hyunwoo Lim; Hunwoo Lee; Hyosung Cho; Changwoo Seo; Uikyu Je; Chulkyu Park; Kyuseok Kim; Guna Kim; Soyoung Park; Dongyeon Lee; Seokyoon Kang; Minsik Lee; Jingtai Cao; Xiaohui Zhao; Zhaokun Li; Wei Liu

Regrettably, due to a technical error during the production process, there were discrepancies in DOI of the mentioned articles between HTML and PDF files. The DOIs are correct in the PDF files but were incorrect in HTML. The original articles have been corrected. The Publisher apologizes for any inconvenience and confusion caused.


Computer Methods and Programs in Biomedicine | 2017

Image reconstruction in region-of-interest (or interior) digital tomosynthesis (DTS) based on compressed-sensing (CS)

Soyoung Park; Guna Kim; Hyosung Cho; Uikyu Je; Chulkyu Park; Kyuseok Kim; Hyunwoo Lim; Dongyeon Lee; Hunwoo Lee; Seokyoon Kang; Jeongeun Park; Taeho Woo; Minsik Lee

BACKGROUND AND OBJECTIVE Digital tomosynthesis (DTS) based on filtered-backprojection (FBP) reconstruction requires a full field-of-view (FOV) scan and relatively dense projections, which results in high doses for medical imaging purposes. To overcome these difficulties, we investigated region-of-interest (ROI) or interior DTS reconstruction where the x-ray beam span covers only a small ROI containing a target area. METHODS An iterative method based on compressed-sensing (CS) scheme was compared with the FBP-based algorithm for ROI-DTS reconstruction. We implemented both algorithms and performed a systematic simulation and experiments on body and skull phantoms. The image characteristics were evaluated and compared. RESULTS The CS-based algorithm yielded much better reconstruction quality in ROI-DTS compared to the FBP-based algorithm, preserving superior image homogeneity, edge sharpening, and in-plane resolution. The image characteristics of the CS-reconstructed images in ROI-DTS were not significantly different from those in full-FOV DTS. The measured CNR value of the CS-reconstructed ROI-DTS image was about 12.3, about 1.9 times larger than that of the FBP-reconstructed ROI-DTS image. CONCLUSIONS ROI-DTS images of substantially high accuracy were obtained using the CS-based algorithm and at reduced imaging doses and less computational cost, compared to typical full-FOV DTS images. We expect that the proposed method will be useful for the development of new DTS systems.


Physica Medica | 2016

3D reconstruction based on compressed-sensing (CS)-based framework by using a dental panoramic detector

Uikyu Je; Hyun-Seung Cho; Dae-Ki Hong; H. Cho; Yeonok Park; Chulkyu Park; Kir-Young Kim; H.W. Lim; Guna Kim; Sung Yul Park; Taeho Woo; S.I. Cho

In this work, we propose a practical method that can combine the two functionalities of dental panoramic and cone-beam CT (CBCT) features in one by using a single panoramic detector. We implemented a CS-based reconstruction algorithm for the proposed method and performed a systematic simulation to demonstrate its viability for 3D dental X-ray imaging. We successfully reconstructed volumetric images of considerably high accuracy by using a panoramic detector having an active area of 198.4 mm × 6.4 mm and evaluated the reconstruction quality as a function of the pitch (p) and the angle step (Δθ). Our simulation results indicate that the CS-based reconstruction almost completely recovered the phantom structures, as in CBCT, for p≤2.0 and θ≤6°, indicating that it seems very promising for accurate image reconstruction even for large-pitch and few-view data. We expect the proposed method to be applicable to developing a cost-effective, volumetric dental X-ray imaging system.


nuclear science symposium and medical imaging conference | 2015

Investigation of reconstruction quality in digital breast tomosynthesis (DBT) based on compressed-sensing algorithm and synthesized 2D breast image

Yeonok Park; Hyosung Cho; Dae-Ki Hong; Uikyu Je; Chulkyu Park; Heemoon Cho; Hyunwoo Lim; Kyuseok Kim; Soyoung Park; Taeho Woo; Sungil Choi

Digital breast tomosynthesis (DBT) is most commonly used in three-dimensional (3D) mammography because it provides a 3D view, so suspected tumors and massed in the breast can be detected with a higher degree of accuracy. Conventional DBT reconstruction methods are based on the filtered-backprojection (FBP) with an additional deblurring filter. However, this approach usually requires dense projection data with low noise levels for acceptable reconstruction quality. In this work, instead, we investigated a state-of-the-art image reconstruction based on the compressed-sensing (CS) theory for potential application to accurate, low-dose DBT. We implemented a CS-based algorithm as well as a FBP-based algorithm for DBT reconstruction and performed a systematic experiment to verify the usefulness of the algorithm by comparing its reconstruction quality to the FBP-based one. We successfully obtained DBT images of substantially high accuracy by using the CS-based algorithm and synthesized a 2D breast image from the CS-reconstructed DBT images, which showed heightened details retained from DBT images, indicating superior performance compared to traditional 2D breast image alone.


Annals of the Rheumatic Diseases | 2014

FRI0242 Value of Ultrasound in Carpal Tunnel Syndrome: Useful Method for Treatment and Therapeutic Response after Steroid Injection

Hyo-Suk Lee; J. Park; Chulkyu Park; Taeyoung Kang

Background Carpal tunnel syndrome (CTS) is the most common compressive neuropathy in rheumatology. Ultrasound guided steroid injection can provide more efficiency compared with blind injection. Objectives The aim of this study was to define the effectiveness of ultrasound guided steroid injection in patients with carpal tunnel syndrome. Methods This prospective study enrolled 21 patients (42 hands) with carpal tunnel syndrome who were confirmed by nerve conduction study. The clinical severity of CTS were assessed by three clinical scales; Boston carpal tunnel syndrome questionnaire (BCTQ), quantitative clinical scale by Simovic (Simovic clinical scale) and Historical-Objective (Hi-Ob) scale. Sonographic evaluation was performed by one ultrasound expert rheumatologist. Cross sectional area, circumference, anterior-posterior diameter and thickness of median nerve were measured at the carpal tunnel inlet level by ultrasound. In nerve conduction studies, sensory nerve action potential, sensory nerve conduction velocity, distal motor latency and compound muscle action potential were recorded. Clinical scale assessment, nerve conduction studies, and sonographic evaluation were performed at baseline before injection and repeated at 2 weeks, 5 weeks, 13 weeks after injection. Linear mixed model and multiple regression test were used and p<0.05 was used for statistical significance. Results After ultrasound guided steroid injection, median nerve cross-sectional area (p=0.0281), circumference (p=0.0281) and transverse diameter (p=0.045) at 2 weeks were significantly decreased compared with baseline visit. This improvement was maintained until 3 months. Clinical improvement measured by Boston questionnaire symptom score (p=0.0012), Simovic clinical scale (p=0.0021) and Historical-Objective scale (p=0.0004) were also significantly improved at 2 weeks visit compared with baseline. There was no complication after injection. Nerve conduction studies showed improvement over time: motor terminal latency was decreased (4.70±1.76 ms to 3.98±1.43 ms), motor ampulitude (9.74±4.12 mV to 11.40±5.31 mV) and Mean sensory velocity (33.81±6.39 m/s to 36.48±2.65m/s) were increased after 4 weeks visit. (table 1) In multiple regression analysis, the change of three ultrasonographic parameters (cross-sectional area, circumference, transverse diameter) were positively correlated with BCTQ symptom score (p=0.0004), Simovic clinical scale (p=0.0007) and motor latency (p=0.0002). Conclusions In patients with CTS in rheumatology clinical practice, ultrasound guided steroid injection into the carpal tunnel can relieve nerve compression symptoms effectively and safely. This is followed by the improvement of ectrophysiological paramaters after 4 weeks later of injection. Moreover, ultasonographic parameters of median nerve measurement were positively correlated with nerve conduction parameters. Disclosure of Interest None declared DOI 10.1136/annrheumdis-2014-eular.3936


international symposium on electrets | 2011

Nonvolatile ferroelectric polymer memory with controlled hierarchical nanostructures

Seok Ju Kang; Young-Pil Park; Chulkyu Park

In summary, we demonstrated a novel non-volatile ferroelectric polymer transistor memory operating at low voltage with reliable data retention. The nanometer scale periodic trenches of OS lamellae were prepared using block copolymer self assembly and employed as a gate insulator by hybridizing with PVDF-TrFE. Confined crystallization of PVDF-TrFE in the trenches of OS lamellae not only significantly reduces the gate leakage current but also induces effective crystal orientation that facilitates ferroelectric polarization switching. A FeFET consisting of a 1D ribbon type single crystalline TIPS-PEN as an active channel and a hybrid PVDF-TrFE/OS lamellae gate insulator exhibits IDS hysteresis fully that is saturated at a programming voltage as low as ±8 V, ON/OFF current ratio of ∼102, and data retention of ∼2 hours.

Collaboration


Dive into the Chulkyu Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge