Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chulman Jo is active.

Publication


Featured researches published by Chulman Jo.


Nature Communications | 2014

Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52.

Chulman Jo; Soner Gundemir; Susanne M. Pritchard; Youngnam N. Jin; Irfan Rahman; Gail V. W. Johnson

Nuclear factor E2-related factor 2 (Nrf2) is a pivotal transcription factor in the defense against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its over-expression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2 knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.


PLOS ONE | 2013

Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin.

Youngnam N. Jin; Yanxun V. Yu; Soner Gundemir; Chulman Jo; Mei Cui; Kim Tieu; Gail V. W. Johnson

Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdhQ111/Q111 cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdhQ7/Q7 cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdhQ111/Q111 cells. Oxidative stress leads to dramatic increases in the number of STHdhQ111/Q111 cells containing swollen mitochondria, while STHdhQ7/Q7 cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdhQ111/Q111 cells. Nrf2 expression does not differ between the two cell types, but STHdhQ111/Q111 cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdhQ111/Q111 cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdhQ7/Q7 cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdhQ111/Q111 cells.


Autophagy | 2014

SUMO1 promotes Aβ production via the modulation of autophagy

Sun-Jung Cho; Sang-Moon Yun; Chulman Jo; Dae-Hoon Lee; Ki Ju Choi; Jae Chun Song; Sang Ick Park; You-Jin Kim; Young Ho Koh

Autophagy is one of the main mechanisms in the pathophysiology of neurodegenerative disease. The accumulation of autophagic vacuoles (AVs) in affected neurons is responsible for amyloid-β (Aβ) production. Previously, we reported that SUMO1 (small ubiquitin-like modifier 1) increases Aβ levels. In this study, we explored the mechanisms underlying this. We investigated whether AV formation is necessary for Aβ production by SUMO1. Overexpression of SUMO1 increased autophagic activation, inducing the formation of LC3-II-positive AVs in neuroglioma H4 cells. Consistently, autophagic activation was decreased by the depletion of SUMO1 with small hairpin RNA (shRNA) in H4 cells. The SUMO1-mediated increase in Aβ was reduced by the autophagy inhibitors (3-methyladenine or wortmannin) or genetic inhibitors (siRNA targeting ATG5, ATG7, ATG12, or HIF1A), respectively. Accumulation of SUMO1, ATG12, and LC3 was seen in amyloid precursor protein transgenic mice. Our results suggest that SUMO1 accelerates the accumulation of AVs and promotes Aβ production, which is a key mechanism for understanding the AV-mediated pathophysiology of Alzheimer disease.


Neurobiology of Aging | 2013

SUMO1 modulates Aβ generation via BACE1 accumulation

Sang Moon Yun; Sun Jung Cho; Jae Chun Song; Sung Yeon Song; Sangmee Ahn Jo; Chulman Jo; Keejung Yoon; Rudolph E. Tanzi; Eui Ju Choi; Young Ho Koh

Accumulation of disease-related proteins is a characteristic event observed in the pathogenesis of neurodegenerative diseases. β-secretase (BACE)-1, which initiates generation of β-amyloid (Aβ), is increased in the Alzheimers diseased brain. However, the mechanisms of BACE1 accumulation in Alzheimers disease are largely unknown. In this report, we found that small ubiquitin-like modifier (SUMO)-1 interacts with the dileucine motif of BACE1 and regulates the level of BACE1 protein. This was proved by the coimmunoprecipitation, and gain or loss of function experiments. Altering 3 SUMO isoforms affects BACE1 protein levels, and consequently results in altered amyloid precursor protein processing and Aβ generation. BACE1 levels were increased in response to Aβ or apoptosis, but not in cells lacking SUMO1. Aβ increased SUMO1 protein levels in rat cortical neurons. Moreover, SUMO1 immunoreactivity was increased in the amyloid precursor protein transgenic mice. Furthermore, the C-terminus fragments of BACE1 containing dileucine motif reduced Aβ generation by SUMO1 overexpression. Our study indicates SUMO1 is not only a novel and potent regulator of BACE1 accumulation and Aβ generation but also a potential therapeutic target for Alzheimers disease.


FEBS Letters | 2014

Sulforaphane induces autophagy through ERK activation in neuronal cells

Chulman Jo; Sunhyo Kim; Sun-Jung Cho; Ki Ju Choi; Sang-Moon Yun; Young Ho Koh; Gail V. W. Johnson; Sang Ick Park

Sulforaphane (SFN), an activator of nuclear factor E2‐related factor 2 (Nrf2), has been reported to induce autophagy in several cells. However, little is known about its signaling mechanism of autophagic induction. Here, we provide evidence that SFN induces autophagy with increased levels of LC3‐II through extracellular signal‐regulated kinase (ERK) activation in neuronal cells. Pretreatment with NAC (N‐acetyl‐l‐cysteine), a well‐known antioxidant, completely blocked the SFN‐induced increase in LC3‐II levels and activation of ERK. Knockdown or overexpression of Nrf2 did not affect autophagy. Together, the results suggest that SFN‐mediated generation of reactive oxygen species (ROS) induces autophagy via ERK activation, independent of Nrf2 activity in neuronal cells.


PLOS ONE | 2012

Metabolic state determines sensitivity to cellular stress in Huntington disease: normalization by activation of PPARγ.

Youngnam N. Jin; Woong Y. Hwang; Chulman Jo; Gail V. W. Johnson

Impairments in mitochondria and transcription are important factors in the pathogenesis of Huntington disease (HD), a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. This study investigated the effect of different metabolic states and peroxisome proliferator-activated receptor γ (PPARγ) activation on sensitivity to cellular stressors such as H2O2 or thapsigargin in HD. Striatal precursor cells expressing wild type (STHdhQ7) or mutant huntingtin (STHdhQ111) were prepared in different metabolic conditions (glucose vs. pyruvate). Due to the fact that STHdhQ111 cells exhibit mitochondrial deficits, we expected that in the pyruvate condition, where ATP is generated primarily by the mitochondria, there would be greater differences in cell death between the two cell types compared to the glucose condition. Intriguingly, it was the glucose condition that gave rise to greater differences in cell death. In the glucose condition, thapsigargin treatment resulted in a more rapid loss of mitochondrial membrane potential (ΔΨm), a greater activation of caspases (3, 8, and 9), and a significant increase in superoxide/reactive oxygen species (ROS) in STHdhQ111 compared to STHdhQ7, while both cell types showed similar kinetics of ΔΨm-loss and similar levels of superoxide/ROS in the pyruvate condition. This suggests that bioenergetic deficiencies are not the primary contributor to the enhanced sensitivity of STHdhQ111 cells to stressors compared to the STHdhQ7 cells. PPARγ activation significantly attenuated thapsigargin-induced cell death, concomitant with an inhibition of caspase activation, a delay in ΔΨm loss, and a reduction of superoxide/ROS generation in STHdhQ111 cells. Expression of mutant huntingtin in primary neurons induced superoxide/ROS, an effect that was significantly reduced by constitutively active PPARγ. These results provide significant insight into the bioenergetic disturbances in HD with PPARγ being a potential therapeutic target for HD.


Scientific Reports | 2016

Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors

Sunhyo Kim; Ki Ju Choi; Sun-Jung Cho; Sang-Moon Yun; Jae-Pil Jeon; Young Ho Koh; Jihyun Song; Gail V. W. Johnson; Chulman Jo

The neuronal accumulation of phosphorylated tau plays a critical role in the pathogenesis of Alzheimer’s disease (AD). Here, we examined the effect of fisetin, a flavonol, on tau levels. Treatment of cortical cells or primary neurons with fisetin resulted in significant decreases in the levels of phosphorylated tau. In addition, fisetin decreased the levels of sarkosyl-insoluble tau in an active GSK-3β-induced tau aggregation model. However, there was no difference in activities of tau kinases and phosphatases such as protein phosphatase 2A, irrespective of fisetin treatment. Fisetin activated autophagy together with the activation of transcription factor EB (TFEB) and Nrf2 transcriptional factors. The activation of autophagy including TFEB is likely due to fisetin-mediated mammalian target of rapamycin complex 1 (mTORC1) inhibition, since the phosphorylation levels of p70S6 kinase and 4E-BP1 were decreased in the presence of fisetin. Indeed, fisetin-induced phosphorylated tau degradation was attenuated by chemical inhibitors of the autophagy-lysosome pathway. Together the results indicate that fisetin reduces levels of phosphorylated tau through the autophagy pathway activated by TFEB and Nrf2. Our result suggests fisetin should be evaluated further as a potential preventive and therapeutic drug candidate for AD.


Journal of Neuroscience Research | 2010

Caspases-2 and -8 are involved in the presenilin1/γ-secretase-dependent cleavage of amyloid precursor protein after the induction of apoptosis

San Sook Chae; Chul Bae Yoo; Chulman Jo; Sang-Moon Yun; Sangmee Ahn Jo; Young Ho Koh

The presenilin/γ‐secretase protease cleaves many type‐I membrane proteins, including the amyloid β‐protein (Aβ) precursor (APP). Previous studies have shown that apoptosis induces alterations in Aβ production in a caspase‐dependent manner. Here, we report that staurosporine (STS)‐induced apoptosis induces caspase‐8 and/or‐2‐dependent γ‐secretase activation. Blocking of caspase activity with caspase‐8 inhibitor z‐IETD‐fmk, and caspase‐2 inhibitor z‐VDVAD‐fmk reduced Aβ production by STS in H4 cells expressing the Swedish mutant of APP (HSW) or APP‐C99 (H4‐C99). There was no inhibitory effect of other caspases (‐1, ‐3, ‐5, ‐6, ‐9) on Aβ production by STS. This finding was further supported by evidence that siRNA transfection, depleting caspase‐2 or ‐8 levels, lowered Aβ production in HSW and H4‐C99 cells without affecting expression of APP or γ‐secretase complex. In addition, Aβ production by STS was decreased by JNK inhibitors, SP600125. These results suggest that caspase‐2 and/or ‐8 is involved in presenilin/γ‐secretase activation and Aβ production in apoptosis.


Cell Communication and Adhesion | 2012

γ-Secretase-Dependent Cleavage of E-Cadherin by Staurosporine in Breast Cancer Cells

Chul Bae Yoo; Sang-Moon Yun; Chulman Jo; Young Ho Koh

E-cadherin is a transmembrane protein that serves as a cell adhesion molecule component of the adherens junction. We previously showed that cadmium induced γ-secretase-dependent E-cadherin cleavage via oxidative stress. In this study, we report that staurosporine (STS)-induced apoptosis induces caspase-2 and/or -8-dependent E-cadherin cleavage. STS increased γ-secretase-dependent cleavage of E-cadherin in breast cancer cells through caspase activation. The ability of the γ-secretase inhibitor DAPT and the caspase inhibitor zVAD-FMK to block E-cadherin cleavage provided support for these results. The cleavage of E-cadherin was blocked by caspase-2 and -8 inhibitors. Immunofluorescence analysis confirmed that, along with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulated in the cytosol. In the presence of an inhibitor of γ-secretase or caspase, the cleavage of E-cadherin was partially blocked. Our findings suggest that activation of caspase-2/-8 stimulated the disruption of cadherin-mediated cell–cell contacts in apoptotic cells via γ-secretase activation.


Biochemical and Biophysical Research Communications | 2014

NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model.

Sunhyo Kim; Dae-Hoon Lee; Jae Chun Song; Sun-Jung Cho; Sang-Moon Yun; Young Ho Koh; Jihyun Song; Gail V. W. Johnson; Chulman Jo

We previously showed that NDP52 (also known as calcoco2) plays a role as an autophagic receptor for phosphorylated tau facilitating its clearance via autophagy. Here, we examined the expression and association of NDP52 with autophagy-regulated gene (ATG) proteins including LC3, as well as phosphorylated tau and amyloid-beta (Aβ) in brains of an AD mouse model. NDP52 was expressed not only in neurons, but also in microglia and astrocytes. NDP52 co-localized with ATGs and phosphorylated tau as expected since it functions as an autophagy receptor for phosphorylated tau in brain. Compared to wild-type mice, the number of autophagic vesicles (AVs) containing NDP52 in both cortex and hippocampal regions was significantly greater in AD model mice. Moreover, the protein levels of NDP52 and phosphorylated tau together with LC3-II were also significantly increased in AD model mice, reflecting autophagy impairment in the AD mouse model. By contrast, a significant change in p62/SQSTM1 level was not observed in this AD mouse model. NDP52 was also associated with intracellular Aβ, but not with the extracellular Aβ of amyloid plaques. We conclude that NDP52 is a key autophagy receptor for phosphorylated tau in brain. Further our data provide clear evidence for autophagy impairment in brains of AD mouse model, and thus strategies that result in enhancement of autophagic flux in AD are likely to be beneficial.

Collaboration


Dive into the Chulman Jo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Moon Yun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sun-Jung Cho

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae Chun Song

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge