Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chulong Zhang is active.

Publication


Featured researches published by Chulong Zhang.


Journal of Plant Growth Regulation | 2010

Role of Diverse Non-Systemic Fungal Endophytes in Plant Performance and Response to Stress: Progress and Approaches

Zhilin Yuan; Chulong Zhang; Fu-Cheng Lin

Plant–fungal symbiotic associations are ubiquitously distributed in natural plant communities. Besides the well-studied mycorrhizal symbiosis and grass systemic clavicipitaceous endophytes, recently, nonsystemic and horizontally transmitted fungal endophytes serving as plant symbionts have been increasingly recognized. Pure culture isolation and culture-independent molecular methods indicate that all parts of healthy plant tissues potentially harbor diverse and previously unknown fungal lineages. Limited evidence also supports a hypothesis that endophytic mycobiota dynamics may have a role in evolution of plants. High variability or “balanced antagonism” can be generally characterized with host–endophyte interactions, which implies that the outcome of symbiotic interactions can fall within a continuum ranging from mutualism to commensalism, and ultimately pathogenicity. Despite this complicated system, admittedly, fungal endophytes really endow the host with an extended phenotype. Accumulating facts illustrate that plant nutrition acquisition, metabolism, and stress tolerance may be strengthened or modulated via fungal symbionts. Piriformospora indica, a member of the order Sebacinales, simultaneously confers host resistance to biotic and abiotic stress. The ecological relevance of other fungal groups, including foliar endophytes, root dark septate endophytes (DSEs), some opportunistic and avirulent microsymbionts (for example, Trichoderma and Fusarium), and even uncultured fungi structurally and physiologically integrated with host tissues, are also being deeply exploited. Production of bioactive metabolites by fungi, overexpression of stress-related enzymes, and induced resistance in hosts upon fungal colonization are responsible for direct or indirect beneficial effects to hosts. More knowledge of endophyte-mediated enhancement of host performance and fitness will offer alternatively valuable strategies for plant cultivation and breeding. Meanwhile, with unprecedented loss of biodiversity, discovery of indigenously novel symbiotic endophytes from natural habitats is urgently needed. In addition, we present some approaches and suggestions for studying host–endophyte interactions.


Applied and Environmental Microbiology | 2010

Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.

Zhilin Yuan; Chulong Zhang; Fu-Cheng Lin; Christian P. Kubicek

ABSTRACT Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.


Fungal Biology | 2010

Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds

Chulong Zhang; Guoping Wang; Li-Juan Mao; Zhilin Yuan; Fu-Cheng Lin; Irina S. Druzhinina; Christian P. Kubicek

The fungal genus Muscodor was erected on the basis of Muscodor albus, an endophytic fungus originally isolated from Cinnamomum zeylanicum. It produces a mixture of volatile organic compounds (VOCs) with antimicrobial activity that can be used as mycofumigants. The genus currently comprises five species. Here we describe the isolation and characterization of a new species of Muscodor on the basis of five endophytic fungal strains from leaves of Actinidia chinensis, Pseudotaxus chienii and an unidentified broad leaf tree in the Fengyangshan Nature Reserve, Zhejiang Province, Southeast of China. They exhibit white colonies on potato dextrose agar (PDA) media, rope-like mycelial strands, but did not sporulate. The optimum growth temperature is 25°C. The results of a phylogenetic analysis based on four loci (ITS1-5.8S-ITS2, 28S rRNA, rpb2 and tub1) are consistent with the hypothesis that these five strains belong to a single taxon. All five strains also produce volatile chemical components with antimicrobial activity in vitro, which were different from those previously described for other Muscodor species.


Fems Microbiology Letters | 2010

A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte.

Zhilin Yuan; Fu-Cheng Lin; Chulong Zhang; Christian P. Kubicek

A survey of the endophytic fungal community of wild rice (Oryza granulata) in China was conducted. Two isolates recovered from healthy roots are assumed to be dark septate endophytes (DSEs). They are morphologically similar to species from the genus Harpophora and are identified as a new species, Harpophora oryzae, based on the molecular phylogeny and morphological characteristics. A neighbor-joining tree constructed from ITS-5.8S rRNA gene regions reveals that H. oryzae forms a distinctive subclade within the genus Harpophora, and is not genetically close to other species of Harpophora. Harpophora oryzae exhibits a moderate growth rate, with a frequent production of rope-like strands. It sporulates readily on artificial medium. Phialides are usually flask or bottle shaped and occur singly along hyphae or laterally and terminally on branched, hyaline to brown conidiophores, and also form whorls on metulae. Conidiophores are mostly branched with a slightly thickened wall, varying in dimensions. Conidia are one-celled and hyaline, most of them being falcate and strongly curved. The morphological differences between Harpophora spp. and Harpophora-like anamorphs representing different orders are also discussed. An in vitro inoculation test showed that H. oryzae may contribute towards improving rice (Oryza sativa L.) growth. Microscopic inspection of roots and phylogenetic placement of isolates further confirmed that H. oryzae represents a novel member of DSEs.


Applied Microbiology and Biotechnology | 2008

Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei

Chulong Zhang; Bi-Qiang Zheng; Jiaping Lao; Li-Juan Mao; Shaoyuan Chen; Christian P. Kubicek; Fu-Cheng Lin

Many endophytic fungi are known to protect plants from plant pathogens, but the antagonistic mechanism has rarely been revealed. In this study, we wished to learn whether an endophytic Aspergillus sp., isolated from Taxus mairei, would indeed produce bioactive components, and if so whether (a) they would antagonize plant pathogenic fungi; and (b) whether this Aspergillus sp. would produce the compound also under conditions of confrontation with these fungi. The endophytic fungal strain from T. mairei was identified as Aspergillus clavatonanicus by analysis of morphological characteristics and the sequence of the internal transcribed spacers (ITS rDNA) of rDNA. When grown in surface culture, the fungus produced clavatol (2′,4′-dihydroxy-3′,5′-dimethylacetophenone) and patulin (2-hydroxy-3,7-dioxabicyclo [4.3.0]nona-5,9-dien-8-one), as shown by shown by NMR, MS, X-ray, and EI-MS analysis. Both exhibited inhibitory activity in vitro against several plant pathogenic fungi, i.e., Botrytis cinerea, Didymella bryoniae, Fusarium oxysporum f. sp. cucumerinum, Rhizoctonia solani, and Pythium ultimum. During confrontation with P. ultimum, A. clavatonanicus antagonized its growth of P. ultimum, and both clavatol as well as patulin were formed as the only bioactive components, albeit with different kinetics. We conclude that A. clavatonanicus produces clavatol and patulin, and that these two polyketides may be involved in the protection of T. mairei against attack by plant pathogens by this Aspergillus sp.


Scientific Reports | 2016

Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity

Zhilin Yuan; Irina S. Druzhinina; Jessy Labbé; Regina S. Redman; Yuan Qin; Russell J. Rodriguez; Chulong Zhang; Gerald A. Tuskan; Fu-Cheng Lin

Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. This work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity.


Scientific Reports | 2015

The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte.

Xi-Hui Xu; Zhen-Zhu Su; Chen Wang; Christian P. Kubicek; Xiao-Xiao Feng; Li-Juan Mao; Jiaying Wang; Chen Chen; Fu-Cheng Lin; Chulong Zhang

The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggesting differences in gene regulation. Moreover, infection patterns, triggering of host defense responses, signal transduction and nutritional preferences exhibited remarkable differentiation between the two fungi. In addition, the H. oryzae genome was found to contain thousands of loci of transposon-like elements, which led to the disruption of 929 genes. Our results indicate that the gain or loss of orphan genes, DNA duplications, gene family expansions and the frequent translocation of transposon-like elements have been important factors in the evolution of this endosymbiont from a pathogenic ancestor.


PLOS ONE | 2013

Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease.

Zhen-Zhu Su; Li-Juan Mao; Na Li; Xiao-Xiao Feng; Zhilin Yuan; Li-Wei Wang; Fu-Cheng Lin; Chulong Zhang

The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.


Journal of Microbiology | 2011

Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (xylariaceae)

Zhilin Yuan; Zhen-Zhu Su; Li-Juan Mao; Yang-qing Peng; Guan-mei Yang; Fu-Cheng Lin; Chulong Zhang

Ecological niches in the rhizosphere and phyllosphere of grasses capable of sustaining endophytes have been extensively studied. In contrast, little information regarding the identity and functions of endophytic fungi in stems is available. In this study, we investigated the taxonomic affinities, diversity, and host specificities of culturable endophytes in stems of wild rice (Oryza granulata) in China. Seventy-four isolates were recovered. Low recovery rate (11.7%) indicated that there were relatively few sites for fungal infection. Identification using morphology, morphospecies sorting, and molecular techniques resulted in classification into 50 taxa, 36 of which were recovered only once. Nucleotide sequence similarity analysis indicated that 30% of the total taxa recovered were highly divergent from known species and thus may represent lineages new to science. Most of the taxa were classified as members of the classes Sordariomycetes or Dothideomycetes (mainly in Pleosporales). The presence of Arthrinium and Magnaporthaceae species, most often associated with poaceous plants, suggested a degree of host specificity. A polyphasic approach was employed to identify two Muscodor taxa based on (i) ITS and RPB2 phylogenies, (ii) volatile compounds produced, and (iii) an in vitro bioassay of antifungal activity. This to our knowledge is only the second report regarding the isolation of Muscodor spp. in China. Therefore, we hypothesize that wild plants represent a huge reservoir of unknown fungi. The prevalence, novelty, and species-specificity of unique isolates necessitate a reevaluation of their contribution to ecosystem function and fungal biodiversity.


Scientific Reports | 2015

Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling.

Xi-Hui Xu; Chen Wang; Shu-Xian Li; Zhen-Zhu Su; Huina Zhou; Li-Juan Mao; Xiao-Xiao Feng; Pingping Liu; Xia Chen; John Hugh Snyder; Christian P. Kubicek; Chulong Zhang; Fu-Cheng Lin

The rice endophyte Harpophora oryzae shares a common pathogenic ancestor with the rice blast fungus Magnaporthe oryzae. Direct comparison of the interactions between a single plant species and two closely-related (1) pathogenic and (2) mutualistic fungi species can improve our understanding of the evolution of the interactions between plants and fungi that lead to either mutualistic or pathogenic interactions. Differences in the metabolome and transcriptome of rice in response to challenge by H. or M. oryzae were investigated with GC-MS, RNA-seq, and qRT-PCR. Levels of metabolites of the shikimate and lignin biosynthesis pathways increased continuously in the M. oryzae-challenged rice roots (Mo-roots); these pathways were initially induced, but then suppressed, in the H. oryzae-challenged rice roots (Ho-roots). Compared to control samples, concentrations of sucrose and maltose were reduced in the Ho-roots and Mo-roots. The expression of most genes encoding enzymes involved in glycolysis and the TCA cycle were suppressed in the Ho-roots, but enhanced in the Mo-roots. The suppressed glycolysis in Ho-roots would result in the accumulation of glucose and fructose which was not detected in the Mo-roots. A novel co-evolution pattern of fungi-host interaction is proposed which highlights the importance of plant host in the evolution of fungal symbioses.

Collaboration


Dive into the Chulong Zhang's collaboration.

Top Co-Authors

Avatar

Fu-Cheng Lin

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian P. Kubicek

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Wei Wang

Hangzhou Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge