Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chun-Feng Li is active.

Publication


Featured researches published by Chun-Feng Li.


Geology | 2011

Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores

Arito Sakaguchi; Frederick M. Chester; Daniel Curewitz; Olivier Fabbri; David L. Goldsby; Gaku Kimura; Chun-Feng Li; Yuka Masaki; Elizabeth J. Screaton; Akito Tsutsumi; Kohtaro Ujiie; Asuka Yamaguchi

Seismic faulting along subduction-type plate boundaries plays a fundamental role in tsunami genesis. During the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTro SEIZE) Stage 1, the updip ends of plate boundary subduction faults were drilled and cored in the Nankai Trough (offshore Japan), where repeated large earthquakes and tsunamis have occurred, including the A.D. 1944 Tonankai (Mw = 8.1) earthquake. Samples were obtained from the frontal thrust, which connects the deep plate boundary to the seafloor at the toe of the accretionary wedge, and from a megasplay fault that branches from the plate boundary decollement. The toe of the accretionary wedge has classically been considered aseismic, but vitrinite reflectance geothermometry reveals that the two examined fault zones underwent localized temperatures of more than 380 °C. This suggests that frictional heating occurred along these two fault zones, and implies that coseismic slip must have propagated at least one time to the updip end of the megasplay fault and to the toe of the accretionary wedge.


Geochemistry Geophysics Geosystems | 2014

Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349

Chun-Feng Li; Xing Xu; Jian Lin; Zhen Sun; Jian Zhu; Yongjian Yao; Xixi Zhao; Qingsong Liu; Denise K. Kulhanek; Jian Wang; Taoran Song; Junfeng Zhao; Ning Qiu; Yongxian Guan; Zhiyuan Zhou; Trevor Williams; Anne Briais; Elizabeth A. Brown; Yifeng Chen; Peter D. Clift; Frederick S. Colwell; Kelsie A. Dadd; Weiwei Ding; Iván Hernández Almeida; Xiao-Long Huang; Sangmin Hyun; Tao Jiang; Anthony A. P. Koppers; Qianyu Li; Chuanlian Liu

Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of approximate to 20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from approximate to 23.6 to approximate to 21.5 Ma. The terminal age of seafloor spreading is approximate to 15 Ma in the East Subbasin and approximate to 16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from approximate to 20 to approximate to 80 km/Myr, but mostly decreased with time except for the period between approximate to 26.0 Ma and the ridge jump (approximate to 23.6 Ma), within which the rate was the fastest at approximate to 70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.


International Geology Review | 2012

Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea

Hesheng Shi; Chun-Feng Li

We have investigated Mesozoic geological problems around the South China Sea (SCS) based on gravimetric, magnetic, seismic, and lithofacies data. Three-dimensional analytical signal amplitudes (ASA) of magnetic anomalies clearly define the inland tectonic boundaries and the residual Mesozoic basins offshore. The ASA suggest that the degree of magmatism and/or the average magnetic susceptibility of igneous rocks increase southeastwards and that late-stage A-type igneous rocks present along the coast of southeast China possess the highest effective susceptibility. The geophysical data define Mesozoic sedimentary and tectonic structures and reveal four major unconformities [Pz/T–J, T–J/J, J/K, and Mesozoic/Cenozoic (Pz, Palaeozic; T, Triassic; J, Jurassic; K, Cretaceous)], corresponding to regional tectonic events revealed by nine palaeogeographic time slices based on prior geological surveys and our new fieldwork. Showing both sedimentary and volcanic facies and regional faults, our palaeogeographic maps confirm an early Mesozoic northwestward-migrating orogeny that gradually obliterated the Tethyan regime, and a middle-to-late Mesozoic southeastward migration and younging in synchronized extension, faulting, and magmatism. Three major phases of marine deposition developed but were subsequently terminated by tectonic compression, uplift, erosion, faulting, rifting, and/or magmatism. The tectonic transition from the Tethyan to Pacific regimes was completed by the end of the Middle Triassic (ca. 220 Ma), reflecting widespread Mesozoic orogeny. The transition from an active to a passive continental margin occurred at the end of the Early Cretaceous (ca. 100 Ma); this was accompanied by significant changes in sedimentary environments, due likely to an eastward retreat of the palaeo-Pacific subduction zone and/or to the collision of the West Philippine block with Eurasia. The overall Mesozoic evolution of southeast China comprised almost an entire cycle of orogenic build-up, peneplanation, and later extension, all under the influence of the subducting palaeo-Pacific plate. Continental margin extension and rifting continued into the early Cenozoic, eventually triggering the Oligocene opening of the SCS.


Geology | 2011

Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai Trough

Asuka Yamaguchi; Arito Sakaguchi; Tatsuhiko Sakamoto; Koichi Iijima; Jun Kameda; Gaku Kimura; Kohtaro Ujiie; Frederick M. Chester; Olivier Fabbri; David L. Goldsby; Akito Tsutsumi; Chun-Feng Li; Daniel Curewitz

The question of whether coseismic ruptures along megasplay faults in accretionary prisms (i.e., large landward-dipping thrust faults branching from the plate boundary) reach the seafloor is critical for assessing the risk of tsunami disaster. However, samples from active megasplay faults have not previously been available. Here we present geochemical and mineralogical data of megasplay fault samples obtained from the shallow (


Geophysics | 2008

Wavelet-based detection of singularities in acoustic impedances from surface seismic reflection data

Chun-Feng Li; Christopher L. Liner

Although the passage of singularity information from acoustic impedance to seismic traces is now well understood, it remains unanswered how routine seismic processing, mode conversions, and multiple reflections can affect the singularity analysis of surface seismic data. We make theoretical investigations on the transition of singularity behaviors from acoustic impedances to surface seismic data. We also perform numerical, wavelet-based singularity analysis on an elastic synthetic data set that is processed through routine seismic processing steps (such as stacking and migration) and that contains mode conversions, multiple reflections, and other wave-equation effects. Theoretically, seismic traces can be approximated as proportional to a smoothed version of the (N+1) th derivative of acoustic impedance,where N is the vanishing moment of the seismic wavelet. This theoretical approach forms the basis of linking singularity exponents (Holder exponents) in acoustic impedance with those computable from seismi...


Seg Technical Program Expanded Abstracts | 2004

SPICE: A new general seismic attribute

Christopher L. Liner; Chun-Feng Li; Adam Gersztenkorn; John Smythe

Some attributes have a solid basis in physics or mathematics and we can term these general attributes. They are robust and can be expected to perform predictably from basin to basin around the world. Of course, like any seismic process they can be rendered useless by severe random or coherent noise, or inappropriate geologic setting. General attributes include horizon peak amplitude and time structure, complex amplitude and frequency, generalized Hilbert attributes, horizon dip and azimuth, illumination, edge-preserved smoothing, edge detection, AVO, coherence, and spectral decomposition. This is not a comprehensive list but should illustrate the class of general attributes. AVO is a good case in point. It is solidly based on the physics of angular elastic reflection coefficients. As workers have applied AVO worldwide they have learned the geologic situations where it is useful and where it is not. This accretion of knowledge is possible because AVO is a robust, physically-based attribute.


Scientific Reports | 2017

A global reference model of Curie-point depths based on EMAG2

Chun-Feng Li; Yu Lu; Jian Wang

In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.


Geophysics | 2004

Gulf of Mexico shelf framework interpretation using a bed-form attribute from spectral imaging

John Smythe; Adam Gersztenkorn; Barbara J. Radovich; Chun-Feng Li; Christopher L. Liner

This article introduces a new attribute called SPICE (spectral imaging of correlative events) that calculates a bed-form boundary framework from the seismic data, and highlights detail from subtle changes in the seismic wavelet. The concept of spectral imaging is presented in the context of a well-log model and its relationship to impedance layering. Further validation of the method is provided by a detailed sequence stratigraphy analysis using well logs and seismic data from the northern Gulf of Mexico. The technique, based on wavelet transform decomposition and singularity analysis of migrated seismic data, uses the localization properties of the wavelet transform in time and frequency to produce a unique display that provides a boundary framework of the subsurface that is rich in structural and stratigraphic detail. This advances seismic interpretation closer to the goal of producing accurate geologic mapping of the subsurface. Additionally, this attribute offers a straightforward way to interpret a seismic section similar to a geologist in the field who maps beds and faults directly from the outcrop. Most seismic interpretation today is performed on variable area displays of the seismic amplitude of a wavelet that changes with depth. This has historically posed a number of significant problems for the interpreter. Reflections in seismic data are blurred representations of the actual stratigraphy. The interference of a changing pulse shape with a wide variety of impedance contrasts in the subsurface adds a significant element of uncertainty to the final mapping of reservoir, seal, and trap. The richness and nonstationary character of the seismic trace require a process that localizes rapidly changing features in the spectrum. The unique calculation reduces the uncertainty in picking subtle bed-form boundaries and brings out the full extent of the resolution of the seismic amplitude data. SPICE is computed in the continuous wavelet transform (CWT) domain …


Marine Geophysical Researches | 2016

Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia

Chun-Feng Li; Jian Wang

The Eastern and Southeastern Asian regions witness the strongest land–ocean and lithosphere–asthenosphere interactions. The extreme diversity of geological features warrants a unified study for a better understanding of their geodynamic uniqueness and/or ubiquity from a regional perspective. In this paper we have explored a large coverage of potential field data and have detected high resolution Moho and Curie depths in the aforementioned regions. The oldest continental and oceanic domains, i.e. the North China craton and the Pacific and Indian Ocean have been found thermally perturbed by events probably linked to small-scale convection or serpentinization in the mantle and to numerous volcanic seamounts and ridges. The thermal perturbation has also been observed in proximity of the fossil ridge of the western Philippine Sea Basin, which shows anomalously small Curie depths. The western Pacific marginal seas have the lowest Moho temperature, with Curie depths generally larger than Moho depths. The contrary is true in most parts of easternmost Eurasian continent. Magmatic processes feeding the Permian Emeishan large igneous province could have also been genetically linked to deep mantle/crustal processes beneath the Sichuan Basin. The regionally elongated magnetic features and small Curie depths along the Triassic Yangtze-Indochina plate boundary suggest that the igneous province could be caused by tectonic processes along plate margins, rather than by a deep mantle plume. At the same time, we interpret the Caroline Ridge, the boundary between the Pacific and the Caroline Sea, as a structure having a continental origin, rather than as hotspot or arc volcanism. The surface heat flow is primarily modulated by a deep isotherm through thermal conduction. This concordance is emphasized along many subduction trenches, where zones of large Curie depths often correspond with low heat flow. Local or regional surface heat flow variations cannot be faithfully used in inferring deep thermal structures, which can be better constrained overall through Curie depths detected from surface magnetic anomalies.


Earth and Planetary Physics | 2018

Thermal structures of the Pacific lithosphere from magnetic anomaly inversion

Chun-Feng Li; Jian Wang

Of the worlds oceans, the Pacific has the most abundant distribution of seamount trails, oceanic plateaus and hot spots, and has the longest fracture zones. However, little is known of their thermal structures due to difficulties of heat flow measurement and interpretation, and in inferring thermal anomalies from low‐resolution seismic velocities. Using recently published global magnetic models, we present the first independent constraint on Pacific geothermal state and mantle dynamics, by applying a fractal magnetization inversion model to magnetic anomaly data. Warm thermal anomalies are inferred for all known active hot spots, most seamount trails, some major fracture zones, and oceanic lithosphere between ~100 and ~140 Ma in age. While most Curie points are among the shallowest in the zone roughly bounded by the 20 Ma isochrons, abnormally deep Curie points are found along nearly all ridge crests in the Pacific, related to patchy, long‐wavelength and large‐amplitude magnetic anomalies that are most likely caused by prevailing magmatic or hydrothermal processes. Many large contrasts in the thermal evolution between the Pacific and North Atlantic support much stronger hydrothermal circulation occurring in Pacific lithospheres younger than ~60 Ma, which may have disguised from surface heat flow any deep thermal signatures of volcanic structures. Yet, at depths of the Curie points, our model argues for warmer Pacific lithosphere for crustal ages older than ~15 Ma, given a slightly higher spatial correlation of magnetization in the Pacific than in the North Atlantic.

Collaboration


Dive into the Chun-Feng Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Lin

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiabiao Li

State Oceanic Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge