Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chun Hei Antonio Cheung is active.

Publication


Featured researches published by Chun Hei Antonio Cheung.


Cancer Treatment Reviews | 2013

Treat cancers by targeting survivin: Just a dream or future reality?

Mohane Selvaraj Coumar; Fang Ying Tsai; Jagat R. Kanwar; Sailu Sarvagalla; Chun Hei Antonio Cheung

Since the discovery of survivin (BIRC5) as a cancer-related molecule by Grazia Ambrosini and Dario C. Altieri at 1997, our knowledge related to the function of this molecule has been extended from simple apoptosis inhibition to complicated, interlinked processes that involve interference of mitosis, apoptosis, autophagy, and even DNA repair recently. However, despite the growing amount of knowledge related to survivin in the last ten years, the development of survivin inhibitors or survivin-related molecular therapies is surprisingly and relatively slow as compared to other therapeutic inhibitors for cancer treatment. Here, the molecular functions of survivin and the progress of development of survivin-targeting therapies are discussed in detail. Functional differences between different survivin-specific inhibitors are discussed from both structural and biochemical point of views. This review also reveals different challenges that scientists are currently facing in the development of survivin inhibitors for clinical application. Finally, future directions for the development of survivin-targeted therapies are discussed in this review.


OncoTargets and Therapy | 2013

Survivin – biology and potential as a therapeutic target in oncology

Chun Hei Antonio Cheung; Chien Chang Huang; Fang Ying Tsai; Jane Ying Chieh Lee; Siao Muk Cheng; Yung Chieh Chang; Yi Chun Huang; Shang Hung Chen; Jang Yang Chang

Survivin is a member of the inhibitor-of-apoptosis proteins (IAPs) family; its overexpression has been widely demonstrated to occur in various types of cancer. Overexpression of survivin also correlates with tumor progression and induces anticancer drug resistance. Interestingly, recent studies reveal that survivin exhibits multiple pro-mitotic and anti-apoptotic functions; the differential functions of survivin seem to be caused by differential subcellular localization, phosphorylation, and acetylation of this molecule. In this review, the complex expression regulations and post-translational modifications of survivin are discussed. This review also discusses how recent discoveries improve our understanding of survivin biology and also create opportunities for developing differential-functioned survivin-targeted therapy. Databases such as PubMed, Scopus® (Elsevier, New York, NY, USA), and SciFinder® (CAS, Columbus, OH, USA) were used to search for literature in the preparation of this review.


Expert Opinion on Therapeutic Patents | 2014

Aurora kinase inhibitor patents and agents in clinical testing: an update (2011 – 2013)

Chun Hei Antonio Cheung; Sailu Sarvagalla; Jane Ying Chieh Lee; Yi Chun Huang; Mohane Selvaraj Coumar

Introduction: Aurora kinase A, B and C, members of serine/threonine kinase family, are key regulators of mitosis. As Aurora kinases are overexpressed in many of the human cancers, small-molecule inhibitors of Aurora kinase have emerged as a possible treatment option for cancer. Areas covered: In 2009 and 2011, the literature pertaining to Aurora kinase inhibitors and their patents was reviewed. Here, the aim is to update the information for Aurora kinase inhibitors in clinical trials and the patents filed between the years 2011 and 2013. Pubmed, Scopus®, Scifinder®, USPTO, EPO and www.clinicaltrials.gov databases were used for searching the literature and patents for Aurora kinase inhibitors. Expert opinion: Even though both Aurora sub-type selective as well as pan-selective inhibitors show preclinical and clinical efficacy, so far no Aurora kinase inhibitor has been approved for clinical use. Particularly, dose-limiting toxicity (neutropenia) is a key issue that needs to be addressed. Preliminary evidence suggests that the use of selective Aurora A inhibitors could avoid Aurora B-mediated neutropenia in clinical settings. Also, use of adjunctive agents such as granulocyte stimulating factor to overcome neutropenia associated with Aurora B inhibition could be an answer to overcome the toxicity and bring Aurora inhibitors to market in the future.


Drug Discovery Today | 2015

Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers

Neha Singh; Subramanian Krishnakumar; Rupinder K. Kanwar; Chun Hei Antonio Cheung; Jagat R. Kanwar

Drug resistance is frequently found in cancer patients who have prolonged chemotherapeutic treatments. Overcoming this phenomenon to make therapy available to these patients is one of the most important features in developing effective cancer therapeutic strategies. Identification of drug resistance causative molecules is one of the most focused areas of cancer research today. Many molecules have been identified in conferring cancer cells the property of drug resistance, and various small molecule inhibitors have been developed to target these molecules to restore the sensitivity of different traditional chemotherapeutic agents, which are frequently found to exhibit reduced potency during prolonged treatment, in cancer patients. Survivin, a member of the inhibitor of apoptosis proteins (IAP) family, has been identified as one of the most crucial biomarkers in the recognition of drug resistance. Survivin is overexpressed in tumor cells, helping in its proliferation and survival, and its overexpression is positively correlated with poor prognosis for cancer patients. Targeted therapeutic measures to inhibit survivin in cancers, particularly drug-resistant tumors, are the recent focus of research for cancer treatment.


British Journal of Pharmacology | 2015

YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells

Siao Muk Cheng; Yung Chieh Chang; C Y Liu; Jane Ying Chieh Lee; H H Chan; Ching-Chuan Kuo; Kun Yuan Lin; Shing Ling Tsai; Shang Hung Chen; Chien Feng Li; Euphemia Leung; Jagat R. Kanwar; Chih-Hsiang Huang; Jang Yang Chang; Chun Hei Antonio Cheung

The aim of this study was to determine the potency and molecular mechanism of action of YM155, a first‐in‐class survivin inhibitor that is currently under phase I/II clinical investigations, in various drug‐resistant breast cancers including the oestrogen receptor positive (ER+) tamoxifen‐resistant breast cancer and the caspase‐3‐deficient breast cancer.


Australian Journal of Chemistry | 2012

Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells

Jagat R. Kanwar; Rupinder K. Kanwar; Ganesh Mahidhara; Chun Hei Antonio Cheung

Curing cancer is the greatest challenge for modern medicine and finding ways to minimize the adverse effects caused by chemotherapeutic agents is of importance in improving patient’s physical conditions. Traditionally, chemotherapy can induce various adverse effects, and these effects are mostly caused by the non-target specific properties of the chemotherapeutic compounds. Recently, the use of nanoparticles has been found to be capable of minimizing these drug-induced adverse effects in animals and in patients during cancer treatment. The use of nanoparticles allows various chemotherapeutic drugs to be targeted to cancer cells with lower dosages. In addition to this, the use of nanoparticles also allows various drugs to be administered to the subjects by an oral route. Here, locked nucleic acid (LNA)-modified epithelial cell adhesion molecules (EpCAM), aptamers (RNA nucleotide), and nucleolin (DNA nucleotide) aptamers have been developed and conjugated on anti-cancer drug-loaded nanocarriers for specific delivery to cancer cells and spare normal cells. Significant amounts of the drug loaded nanocarriers (92 ± 6 %) were found to distribute to the cancer cells at the tumour site and more interestingly, normal cells were unaffected in vitro and in vivo. In this review, the benefits of using nanoparticle-coated drugs in various cancer treatments are discussed. Various nanoparticles that have been tried in improving the target specificity and potency of chemotherapeutic compounds are also described.


RSC Advances | 2015

Locked nucleic acid modified bi-specific aptamer-targeted nanoparticles carrying survivin antagonist towards effective colon cancer therapy

Kislay Roy; Rupinder K. Kanwar; Chun Hei Antonio Cheung; Cassandra L. Fleming; Rakesh N. Veedu; Subramanian Krishnakumar; Jagat R. Kanwar

We investigated the anti-cancer activity of alginate coated chitosan nanoparticles (CHNP) encapsulating cell-permeable dominant negative survivin (SR9) with locked nucleic acid (LNA) aptamers targeting EpCAM and nucleolin (termed as “nanobullets”) in vitro (2D and 3D cell culture models) and in vivo (colon cancer mouse xenograft model). We incorporated three LNA modifications in each sequence in order to enhance the stability of these aptamers. Confocal microscopy revealed binding of the LNA-aptamers to their specific markers with high affinity. The muco-adhesive nanobullets showed 6-fold higher internalization in cancer cells when compared to non-cancerous cells, suggesting a tumour specific uptake. A higher intensity of nanobullets was observed in both the periphery and the core of the multicellular tumour spheroids compared to non-targeted CHNP-SR9. The nanobullets were found to be the highly effective as they led to a 2.26 fold (p < 0.05) reduction at 24 h and a 4.95 fold reduction (p ≤ 0.001) in the spheroid size at 72 h. The tumour regression was 4 fold higher in mice fed on a nanobullet diet when compared to a control diet. The nanobullets were able to show a significantly high apoptotic (p ≤ 0.0005) and necrotic index in the tumour cell population (p ≤ 0.005) when compared to void NPs. Therefore, our nanoparticles have shown highly promising results and therefore deliver a new conduit towards the approach of cancer-targeted nanodelivery.


Frontiers in Pharmacology | 2016

Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells

Jane Ying Chieh Lee; Ching Wen Kuo; Shing Ling Tsai; Siao Muk Cheng; Shang Hung Chen; Hsiu Han Chan; Chun Hui Lin; Kun Yuan Lin; Chien Feng Li; Jagat R. Kanwar; Euphemia Leung; Carlos Chun Ho Cheung; Wei Jan Huang; Yi Ching Wang; Chun Hei Antonio Cheung

SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA is equally effective in targeting cells of different breast cancer subtypes and tamoxifen sensitivity. Importantly, we found that down-regulation of survivin plays an important role in SAHA-induced autophagy and cell viability reduction in human breast cancer cells. SAHA decreased survivin and XIAP gene transcription, induced survivin protein acetylation and early nuclear translocation in MCF7 and MDA-MB-231 breast cancer cells. It also reduced survivin and XIAP protein stability in part through modulating the expression and activation of the 26S proteasome and heat-shock protein 90. Interestingly, targeting HDAC3 and HDAC6, but not other HDAC isoforms, by siRNA/pharmacological inhibitors mimicked the effects of SAHA in modulating the acetylation, expression, and nuclear translocation of survivin and induced autophagy in MCF7 and MDA-MB-231 cancer cells. Targeting HDAC3 also mimicked the effect of SAHA in up-regulating the expression and activity of proteasome, which might lead to the reduced protein stability of survivin in breast cancer cells. In conclusion, this study provides new insights into SAHAs molecular mechanism of actions in breast cancer cells. Our findings emphasize the complexity of the regulatory roles in different HDAC isoforms and potentially assist in predicting the mechanism of novel HDAC inhibitors in targeted or combinational therapies in the future.


International Journal of Nanomedicine | 2015

Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model

Kislay Roy; Rupinder K. Kanwar; Subramanian Krishnakumar; Chun Hei Antonio Cheung; Jagat R. Kanwar

Endogenous survivin expression has been related with cancer survival, drug resistance, and metastasis. Therapies targeting survivin have been shown to significantly inhibit tumor growth and recurrence. We found out that a cell-permeable dominant negative survivin (SurR9-C84A, referred to as SR9) competitively inhibited endogenous survivin and blocked the cell cycle at the G1/S phase. Nanoencapsulation in mucoadhesive chitosan nanoparticles (CHNP) substantially increased the bioavailability and serum stability of SR9. The mechanism of nanoparticle uptake was studied extensively in vitro and in ex vivo models. Our results confirmed that CHNP–SR9 protected primary cells from autophagy and successfully induced tumor-specific apoptosis via both extrinsic and intrinsic apoptotic pathways. CHNP–SR9 significantly reduced the tumor spheroid size (three-dimensional model) by nearly 7-fold. Effects of SR9 and CHNP–SR9 were studied on 35 key molecules involved in the apoptotic pathway. Highly significant (4.26-fold, P≤0.005) reduction in tumor volume was observed using an in vivo mouse xenograft colon cancer model. It was also observed that net apoptotic (6.25-fold, P≤0.005) and necrotic indexes (3.5-fold, P≤0.05) were comparatively higher in CHNP–SR9 when compared to void CHNP and CHNP–SR9 internalized more in cancer stem cells (4.5-fold, P≤0.005). We concluded that nanoformulation of SR9 did not reduce its therapeutic potential; however, nanoformulation provided SR9 with enhanced stability and better bioavailability. Our study presents a highly tumor-specific protein-based cancer therapy that has several advantages over the normally used chemotherapeutics.


RSC Advances | 2016

Disruption of protein–protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target – survivin

Sailu Sarvagalla; Chun Hei Antonio Cheung; Ju Ya Tsai; Hsing Pang Hsieh; Mohane Selvaraj Coumar

Survivin is a member of the inhibitor of the apoptosis (IAP) family of proteins, and plays a crucial role in both cell division and apoptosis. As it is overexpressed in many human solid tumors, it has become an attractive drug target for cancer therapy. Survivin is involved in protein–protein interactions (PPI) with several of its substrate proteins, and disruption of these interactions could be a possible means to target the function of survivin in cancer. To this end, we sought and were able to detect hot spot residues in the survivin dimer and Chromosomal Passenger Complex (CPC; survivin/borealin/INCENP) using simple knowledge based physical models implemented in the Robetta server (http://robetta.bakerlab.org/), KFC server (http://kfc.mitchell-lab.org/) and the HotRegion database (http://prism.ccbb.ku.edu.tr/hotregion/). Then, extensive molecular dynamics simulations were applied to generate an ensemble of conformations and were used to quantitatively estimate the binding free energy of the identified hot spot residues using MM-PBSA alanine scanning mutagenesis and per-residue energy decomposition. Based on the frequency of occurrence of the hot spot residues and the estimated binding free energy, the survivin dimer and CPC interface residues were designated as “hot spots” and “warm spots”. Finally, based on the identified hot spots of survivin (Leu6A, Trp10A, Leu98A, Phe101A, Asp105A, and Arg106A), a pharmacophore model was derived and used to virtually screen database compounds to identify indinavir as potential inhibitor that could target survivin PPI. A preliminary biochemical investigation shows that the treatment of MDA-MB-231 breast cancer cells with indinavir resulted in Aurora B and XIAP downregulation and caspase-3 activation, hallmarks of survivin PPI inhibition.

Collaboration


Dive into the Chun Hei Antonio Cheung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siao Muk Cheng

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shang Hung Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Jane Ying Chieh Lee

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Jang Yang Chang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge