Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chun-Hong Kuo is active.

Publication


Featured researches published by Chun-Hong Kuo.


ACS Nano | 2011

Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells

Jyh-Lih Wu; Fang-Chung Chen; Yu-Sheng Hsiao; Fan-Ching Chien; Peilin Chen; Chun-Hong Kuo; Michael H. Huang; Chain-Shu Hsu

We have systematically explored how plasmonic effects influence the characteristics of polymer photovoltaic devices (OPVs) incorporating a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We blended gold nanoparticles (Au NPs) into the anodic buffer layer to trigger localized surface plasmon resonance (LSPR), which enhanced the performance of the OPVs without dramatically sacrificing their electrical properties. Steady state photoluminescence (PL) measurements revealed a significant increase in fluorescence intensity, which we attribute to the increased light absorption in P3HT induced by the LSPR. As a result, the rate of generation of excitons was enhanced significantly. Furthermore, dynamic PL measurements revealed that the LSPR notably reduced the lifetime of photogenerated excitons in the active blend, suggesting that interplay between the surface plasmons and excitons facilitated the charge transfer process. This phenomenon reduced the recombination level of geminate excitons and, thereby, increased the probability of exciton dissociation. Accordingly, both the photocurrents and fill factors of the OPV devices were enhanced significantly. The primary origin of this improved performance was local enhancement of the electromagnetic field surrounding the Au NPs. The power conversion efficiency of the OPV device incorporating the Au NPs improved to 4.24% from a value of 3.57% for the device fabricated without Au NPs.


Journal of the American Chemical Society | 2012

Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control

Chun-Hong Kuo; Yang Tang; Lien-Yang Chou; Brian T. Sneed; Casey N. Brodsky; Zipeng Zhao; Chia-Kuang Tsung

A general synthetic strategy for yolk-shell nanocrystal@ZIF-8 nanostructures has been developed. The yolk-shell nanostructures possess the functions of nanoparticle cores, microporous shells, and a cavity in between, which offer great potential in heterogeneous catalysis. The synthetic strategy involved first coating the nanocrystal cores with a layer of Cu(2)O as the sacrificial template and then a layer of polycrystalline ZIF-8. The clean Cu(2)O surface assists in the formation of the ZIF-8 coating layer and is etched off spontaneously and simultaneously during this process. The yolk-shell nanostructures were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. To study the catalytic behavior, hydrogenations of ethylene, cyclohexene, and cyclooctene as model reactions were carried out over the Pd@ZIF-8 catalysts. The microporous ZIF-8 shell provides excellent molecular-size selectivity. The results show high activity for the ethylene and cyclohexene hydrogenations but not in the cyclooctene hydrogenation. Different activation energies for cyclohexene hydrogenation were obtained for nanostructures with and without the cavity in between the core and the shell. This demonstrates the importance of controlling the cavity because of its influence on the catalysis.


Applied Physics Letters | 2009

Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles

Fang-Chung Chen; Jyh-Lih Wu; Chia-Ling Lee; Yi Hong; Chun-Hong Kuo; Michael H. Huang

We have explored the effect of gold nanoparticle (Au NP)-induced surface plasmons on the performance of organic photovoltaic devices (OPVs). The power conversion efficiency of these OPVs was improved after blending the Au NPs into the anodic buffer layer. The addition of Au NPs increased the rate of exciton generation and the probability of exciton dissociation, thereby enhancing the short-circuit current density and the fill factor. We attribute the improvement in device performance to the local enhancement in the electromagnetic field originating from the excitation of the localized surface plasmon resonance.


ACS Nano | 2014

Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation

Jia Zhuang; Chun-Hong Kuo; Lien-Yang Chou; De-Yu Liu; Eranthie Weerapana; Chia-Kuang Tsung

We have developed a general synthetic route to encapsulate small molecules in monodisperse zeolitic imid-azolate framework-8 (ZIF-8) nanospheres for drug delivery. Electron microscopy, powder X-ray diffraction, and elemental analysis show that the small-molecule-encapsulated ZIF-8 nanospheres are uniform 70 nm particles with single-crystalline structure. Several small molecules, including fluorescein and the anticancer drug camptothecin, were encapsulated inside of the ZIF-8 framework. Evaluation of fluorescein-encapsulated ZIF-8 nanospheres in the MCF-7 breast cancer cell line demonstrated cell internalization and minimal cytotoxicity. The 70 nm particle size facilitates cellular uptake, and the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo, thereby rendering the ZIF-8 scaffold an ideal drug delivery vehicle. To confirm this, we demonstrate that camptothecin encapsulated ZIF-8 particles show enhanced cell death, indicative of internalization and intracellular release of the drug. To demonstrate the versatility of this ZIF-8 system, iron oxide nanoparticles were also encapsulated into the ZIF-8 nanospheres, thereby endowing magnetic features to these nanospheres.


Journal of the American Chemical Society | 2008

Fabrication of Truncated Rhombic Dodecahedral Cu2O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching

Chun-Hong Kuo; Michael H. Huang

We report a simple approach for the fabrication of cuprous oxide (Cu2O) nanocages and nanoframes. An aqueous solution of CuCl2, sodium dodecyl sulfate (SDS) surfactant, NH2OH·HCl reductant, HCl, and NaOH was prepared with reagents introduced in the order listed. Rapid seed particle aggregation and surface reconstruction of the intermediate structures resulted in the growth of type I nanoframes with just the {110} skeleton faces and empty {100} faces 45 minutes after mixing the reagents. Continued crystal growth for additional 75 min produced the nanocages with filled {100} faces. The nanocages have diameters of 350–400 nm, and their walls are thicker than those of the nanoframes. Selective acidic etching over the {110} faces of the nanocages by HCl via the addition of ethanol and then sonication of the solution led to the formation of type II nanoframes with elliptical pores on the {110} faces. The morphologies of these nanoframes have been carefully examined by electron microscopy. Without adding ethanol, random etching of the nanocages can occur at a slow rate. These composite materials should display interesting properties and functions.


Journal of the American Chemical Society | 2009

Au Nanocrystal-Directed Growth of Au-Cu2O Core-Shell Heterostructures with Precise Morphological Control

Chun-Hong Kuo; Tzu-En Hua; Michael H. Huang

Formation of metal-semiconductor core-shell heterostructures with precise morphological control of both components remains challenging. Heterojunctions, rather than core-shell structures, were typically produced for metal-semiconductor composites. Furthermore, growth of semiconductor shells with systematic shape evolution using the same metal particle cores can also present a significant challenge. Here, we have synthesized Au-Cu(2)O core-shell heterostructures using gold nanoplates, nanorods, octahedra, and highly faceted nanoparticles as the structure-directing cores for the overgrowth of Cu(2)O shells by a facile aqueous solution approach. The gold nanoparticle cores guide the growth of Cu(2)O shells with morphological and orientation control. Systematic shape evolution of the shells can be easily achieved by simply adjusting the volume of reductant added. For example, truncated cubic to octahedral Cu(2)O shells were produced from octahedral gold nanocrystal cores. Unusual truncated stellated icosahedral and star column structures have also been synthesized. The heterostructures were found to be formed via an unusual hollow-shell-refilled growth mechanism not reported before. The approach has potential toward the preparation of other complex Cu(2)O structures with well-defined facets.


Langmuir | 2010

Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures

Hsin Lun Wu; Chun-Hong Kuo; Michael H. Huang

We report a seed-mediated synthesis method for the preparation of gold nanocrystals with systematic shape evolution from truncated cubic to cubic, trisoctahedral, and rhombic dodecahedral structures in aqueous solution for the first time. Nanocrystals with transitional morphologies were also synthesized. The combination of using cetyltrimethylammonium chloride (CTAC) surfactant and a very small amount of NaBr to control the bromide concentration in the growth solution was found to be critical to the formation of nanocubes. Variation in the volume of ascorbic acid added to the growth solution enabled the fine control of nanocrystal morphology. Nanocubes and rhombic dodecahedra with controlled sizes of 30-75 nm were prepared by adjusting the volume of the seed solution added to the growth solution. They can self-assemble into ordered packing structures on substrates because of their uniform sizes. XRD, TEM, and UV-vis absorption characterization of the different products synthesized have been performed. By increasing the bromide concentration 5-fold that used to make the nanocubes, unusual right bipyramids of gold bounded by six {100} faces were produced. The high product purity and excellent size control of this facile synthetic approach should make these novel gold nanostructures be readily available for a wide range of studies.


Journal of the American Chemical Society | 2011

Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au-Cu2O Core-Shell Heterostructures

Chun-Hong Kuo; Yu-Chen Yang; Shangjr Gwo; Michael H. Huang

We report highly facet-dependent electrical properties of Cu(2)O nanocubes and octahedra and significant enhancement of gold nanocrystal cores to the electrical conductivity of Au-Cu(2)O core-shell octahedra. Cu(2)O nanocubes and octahedra and Au-Cu(2)O core-shell cubes and octahedra were synthesized by following our reported facile procedures at room temperature. Two oxide-free tungsten probes attached to a nanomanipulator installed inside a scanning electron microscope made contacts to a single Cu(2)O nanocrystal for the I-V measurements. Pristine Cu(2)O octahedra bounded by {111} facets are 1100 times more conductive than pristine Cu(2)O cubes enclosed by {100} faces, which are barely conductive. Core-shell cubes are only slightly more conductive than pristine cubes. A 10,000-fold increase in conductivity over a cube has been recorded for an octahedron. Remarkably, core-shell octahedra are far more conductive than pristine octahedra. The same facet-dependent electrical behavior can still be observed on a single nanocrystal exposing both {111} and {100} facets. This new fundamental property may be observable in other semiconductor nanocrystals. We also have shown that both core-shell cubes and octahedra outperform pristine cubes and octahedra in the photodegradation of methyl orange. Efficient photoinduced charge separation is attributed to this enhanced photocatalytic activity. Interestingly, facet-selective etching occurred over the {100} corners of some octahedra and core-shell octahedra during photocatalysis. The successful preparation of Au-Cu(2)O core-shell heterostructures with precise shape control has offered opportunities to discover new and exciting physical and chemical properties of nanocrystals.


Journal of the American Chemical Society | 2012

Iodide-Mediated Control of Rhodium Epitaxial Growth on Well-Defined Noble Metal Nanocrystals: Synthesis, Characterization, and Structure-Dependent Catalytic Properties

Brian T. Sneed; Chun-Hong Kuo; Casey N. Brodsky; Chia-Kuang Tsung

Metal nanocrystals (NCs) comprising rhodium are heterogeneous catalysts for CO oxidation, NO reduction, hydrogenations, electro-oxidations, and hydroformylation reactions. It has been demonstrated that control of structure at the nanoscale can enhance the performance of a heterogeneous metal catalyst, such as Rh, but molecular-level control of NCs comprising this metal is less studied compared to gold, silver, platinum, and palladium. We report an iodide-mediated epitaxial overgrowth of Rh by using the surfaces of well-defined foreign metal crystals as substrates to direct the Rh surface structures. The epigrowth can be accomplished on different sizes, morphologies, and identities of metal substrates. The surface structures of the resulting bimetallic NCs were studied using electron microscopy, and their distinct catalytic behaviors were examined in CO stripping and the electro-oxidation of formic acid. Iodide was found to play a crucial role in the overgrowth mechanism. With the addition of iodide, the Rh epigrowth can even be achieved on gold substrates despite the rather large lattice mismatch of ~7%. Hollow Rh nanostructures have also been generated by selective etching of the core substrates. The new role of iodide in the overgrowth and the high level of control for Rh could hold the key to future nanoscale control of this important metals architecture for use in heterogeneous catalysis.


Journal of the American Chemical Society | 2013

Nanoscale-Phase-Separated Pd–Rh Boxes Synthesized via Metal Migration: An Archetype for Studying Lattice Strain and Composition Effects in Electrocatalysis

Brian T. Sneed; Casey N. Brodsky; Chun-Hong Kuo; Leo K. Lamontagne; Ying Jiang; Yong Wang; Franklin Feng Tao; Weixin Huang; Chia-Kuang Tsung

Developing syntheses of more sophisticated nanostructures comprising late transition metals broadens the tools to rationally design suitable heterogeneous catalysts for chemical transformations. Herein, we report a synthesis of Pd-Rh nanoboxes by controlling the migration of metals in a core-shell nanoparticle. The Pd-Rh nanobox structure is a grid-like arrangement of two distinct metal phases, and the surfaces of these boxes are {100} dominant Pd and Rh. The catalytic behaviors of the particles were examined in electrochemistry to investigate strain effects arising from this structure. It was found that the trends in activity of model fuel cell reactions cannot be explained solely by the surface composition. The lattice strain emerging from the nanoscale separation of metal phases at the surface also plays an important role.

Collaboration


Dive into the Chun-Hong Kuo's collaboration.

Top Co-Authors

Avatar

Michael H. Huang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Cullen

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen-Rui Kao

National Chung Cheng University

View shared research outputs
Top Co-Authors

Avatar

Fang-Chung Chen

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Jyh-Lih Wu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge