Chun-Hua Yan
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chun-Hua Yan.
ACS Nano | 2013
Ye-Fu Wang; Gao-Yuan Liu; Ling-Dong Sun; Jia-Wen Xiao; Jia-Cai Zhou; Chun-Hua Yan
Upconversion (UC) process in lanthanide-doped nanomaterials has attracted great research interest for its extensive biological applications in vitro and in vivo, benefiting from the high tissue penetration depth of near-infrared excitation light and low autofluorescence background. However, the 980 nm laser, typically used to trigger the Yb(3+)-sensitized UC process, is strongly absorbed by water in biological structures and could cause severe overheating effect. In this article, we report the extension of the UC excitation spectrum to shorter wavelengths, where water has lower absorption. This is realized by further introducing Nd(3+) as the sensitizer and by building a core/shell structure to ensure successive Nd(3+) → Yb(3+) → activator energy transfer. The efficacy of this Nd(3+)-sensitized UC process is demonstrated in in vivo imaging, and the results confirmed that the laser-induced local overheating effect is greatly minimized.
Journal of the American Chemical Society | 2008
Quan Yuan; An-Xiang Yin; Chen Luo; Ling-Dong Sun; Ya-Wen Zhang; Wen-Tao Duan; Hai-Chao Liu; Chun-Hua Yan
The facile synthesis of highly ordered mesoporous aluminas with high thermal stability and tunable pore sizes is systematically investigated. The general synthesis strategy is based on a sol-gel process associated with nonionic block copolymer as templates in ethanol solvent. Small-angle XRD, TEM, and nitrogen adsorption and desorption results show that these mesoporous aluminas possess a highly ordered 2D hexagonal mesostructure, which is resistant to high temperature up to 1000 degrees C. Ordered mesoporous structures with tunable pore sizes are obtained with various precursors, different acids as pH adjustors, and different block copolymers as templates. These mesoporous aluminas have large surface areas (ca. 400 m2/g), pore volumes (ca. 0.70 cm3/g), and narrow pore-size distributions. The influence of the complexation ability of anions and hydro-carboxylic acid, acid volatility, and other important synthesis conditions are discussed in detail. Utilizing this simple strategy, we also obtained partly ordered mesoporous alumina with hydrous aluminum nitrate as the precursor. FTIR pyridine adsorption measurements indicate that a large amount of Lewis acid sites exist in these mesoporous aluminas. These materials are expected to be good candidates in catalysis due to the uniform pore structures, large surface areas, tunable pore sizes, and large amounts of surface Lewis acid sites. Loaded with ruthenium, the representative mesoporous alumina exhibits reactant size selectivity in hydrogenation of acetone, D-glucose, and D-(+)-cellobiose as a test reaction, indicating the potential applications in shape-selective catalysis.
Journal of the American Chemical Society | 2011
An-Xiang Yin; Xiao-Quan Min; Ya-Wen Zhang; Chun-Hua Yan
Monodisperse single-crystalline sub-10 nm Pt-Pd nanotetrahedrons (NTs) and nanocubes (NCs) were synthesized with high shape selectivity via one-pot hydrothermal routes with small ions as efficient facet-selective agents. These alloy nanocrystals showed facet-dependent enhanced electrocatalytic activity and durability for methanol electrooxidations with commercial Pt/C catalyst as a reference. The (100)-facet-enclosed Pt-Pd NCs demonstrated a higher activity, whereas the (111)-facet-enclosed Pt-Pd NTs exhibited a better durability.
Journal of the American Chemical Society | 2008
Chun-Jiang Jia; Ling-Dong Sun; Feng Luo; Xiaodong Han; L. J. Heyderman; Zheng-Guang Yan; Chun-Hua Yan; Kun Zheng; Ze Zhang; Mikio Takano; Naoaki Hayashi; Matthias Eltschka; Mathias Kläui; Ulrich Rüdiger; Takeshi Kasama; Lionel Cervera-Gontard; Rafal E. Dunin-Borkowski; George Tzvetkov; Jörg Raabe
We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can be divided into two stages: (1) formation of capsule-shaped alpha-Fe2O3 nanoparticles and (2) preferential dissolution along the long dimension of the elongated nanoparticles (the c axis of alpha-Fe2O3) to form nanorings. The shape of the nanorings is mainly regulated by the adsorption of phosphate ions on faces parallel to c axis of alpha-Fe2O3 during the nanocrystal growth, and the hollow structure is given by the preferential dissolution of the alpha-Fe2O3 along the c axis due to the strong coordination of the sulfate ions. By varying the ratios of phosphate and sulfate ions to ferric ions, we were able to control the size, morphology, and surface architecture to produce a variety of three-dimensional hollow nanostructures. These can then be converted to magnetite (Fe3O4) and maghemite (gamma-Fe2O3) by a reduction or reduction-oxidation process while preserving the same morphology. The structures and magnetic properties of these single-crystal alpha-Fe2O3, Fe3O4, and gamma-Fe2O3 nanorings were characterized by various analytical techniques. Employing off-axis electron holography, we observed the classical single-vortex magnetic state in the thin magnetite nanorings, while the thicker rings displayed an intriguing three-dimensional magnetic configuration. This work provides an easily scaled-up method for preparing tailor-made iron oxide nanorings that could meet the demands of a variety of applications ranging from medicine to magnetoelectronics.
Journal of the American Chemical Society | 2009
Tian Ming; Wei Feng; Qin Tang; Feng Wang; Ling-Dong Sun; Jianfang Wang; Chun-Hua Yan
Elongated tetrahexahedral Au nanocrystals have been grown in high yields using a seed-mediated growth method. Morphological and structural characterizations show that these Au nanocrystals are single-crystalline and enclosed by 24 high-index {037} facets. They are more electrochemically active than octahedral Au nanocrystals that are enclosed by 8 low-index {111} facets. To date, there have been only a few reports of metal nanocrystals that are enclosed exclusively by high-index facets, including trisoctahedral Au nanocrystals enclosed by 24 {122} facets and tetrahexahedral Pt nanocrystals enclosed by 24 {037} facets. Our tetrahexahedral Au nanocrystals will be an important addition to the family of metal nanocrystals that are enclosed exclusively by high-index facets and will also be useful for fundamental catalytic studies on metal nanocrystals.
Nano Letters | 2009
Tian Ming; Lei Zhao; Zhi Yang; Huanjun Chen; Ling-Dong Sun; Jianfang Wang; Chun-Hua Yan
We report on the strong polarization dependence of the plasmon-enhanced fluorescence on single gold nanorods. The fluorescence from the organic fluorophores that are embedded in a mesostructured silica shell around individual gold nanorods is enhanced by the longitudinal plasmon resonance of the nanorods. Our electrostatic calculations show that under an off-resonance excitation, the electric field intensity contour around a nanorod rotates away from the length axis as the excitation polarization is varied. The polarization dependence of the plasmon-enhanced fluorescence is ascribed to the dependence of the averaged electric field intensity enhancement within the silica shell on the excitation polarization. The measured fluorescence enhancement factor is in very good agreement with that obtained from the electrostatic calculations. The fluorescence enhancement factor increases as the longitudinal plasmon wavelength is synthetically tuned close to the excitation wavelength. In addition, the polarization dependence is used to determine the orientation angle of the gold nanorods. The results are in excellent agreement with the actual measurements. Furthermore, the emission spectrum of the fluorophore is modified by the longitudinal plasmon resonance of the gold nanorods. A linear correlation between the emission peak wavelength and the longitudinal plasmon wavelength is obtained.
Journal of the American Chemical Society | 2013
Feng Wang; Chuanhao Li; Huanjun Chen; Ruibin Jiang; Ling-Dong Sun; Quan Li; Jianfang Wang; Jimmy C. Yu; Chun-Hua Yan
The efficient use of solar energy has received wide interest due to increasing energy and environmental concerns. A potential means in chemistry is sunlight-driven catalytic reactions. We report here on the direct harvesting of visible-to-near-infrared light for chemical reactions by use of plasmonic Au-Pd nanostructures. The intimate integration of plasmonic Au nanorods with catalytic Pd nanoparticles through seeded growth enabled efficient light harvesting for catalytic reactions on the nanostructures. Upon plasmon excitation, catalytic reactions were induced and accelerated through both plasmonic photocatalysis and photothermal conversion. Under the illumination of an 809 nm laser at 1.68 W, the yield of the Suzuki coupling reaction was ~2 times that obtained when the reaction was thermally heated to the same temperature. Moreover, the yield was also ~2 times that obtained from Au-TiOx-Pd nanostructures under the same laser illumination, where a 25-nm-thick TiOx shell was introduced to prevent the photocatalysis process. This is a more direct comparison between the effect of joint plasmonic photocatalysis and photothermal conversion with that of sole photothermal conversion. The contribution of plasmonic photocatalysis became larger when the laser illumination was at the plasmon resonance wavelength. It increased when the power of the incident laser at the plasmon resonance was raised. Differently sized Au-Pd nanostructures were further designed and mixed together to make the mixture light-responsive over the visible to near-infrared region. In the presence of the mixture, the reactions were completed within 2 h under sunlight, while almost no reactions occurred in the dark.
Journal of the American Chemical Society | 2011
Feng Wang; Chuanhao Li; Ling-Dong Sun; Hao-Shuai Wu; Tian Ming; Jianfang Wang; Jimmy C. Yu; Chun-Hua Yan
The development of high-performance nanocatalysts relies essentially on the generation of stable and active surface sites at the atomic scale through synthetic control of the size, shape, and chemical composition of nanoscale metals and metal oxides. One promising route is to induce the exposure of catalytically active high-index facets of nanostructures through shape-controlled syntheses. We have designed and prepared two types of Pd nanoshells that are enclosed by high-index {730} and {221} facets through heteroepitaxial growth on high-index-faceted Au nanocrystals. The turnover numbers per surface atom of the high-index-faceted Pd nanoshells have been found to be 3-7 times those of Pd and Au-Pd core-shell nanocubes that possess only {100} facets in catalyzing the Suzuki coupling reaction. These results open up a potential for the development of inexpensive and highly active metal nanocatalysts.
Accounts of Chemical Research | 2014
Ling-Dong Sun; Ye-Fu Wang; Chun-Hua Yan
Rare earth (RE) materials, which are excited in the ultraviolet and emit in the visible light spectrum, are widely used as phosphors for lamps and displays. In the 1960s, researchers reported an abnormal emission phenomenon where photons emitted from a RE element carried more energy than those absorbed, owing to the sequential energy transfer between two RE ions--Yb(3+)-sensitized Er(3+) or Tm(3+)--in the solid state. After further study, researchers named this abnormal emission phenomenon upconversion (UC) emission. More recent approaches take advantage of solution-based synthesis, which allows creation of homogenous RE nanoparticles (NPs) with controlled size and structure that are capable of UC emission. Such nanoparticles are useful for many applications, especially in biology. For these applications, researchers seek small NPs with high upconversion emission intensity. These UCNPs have the potential to have multicolor and tunable emissions via various activators. A vast potential for future development remains by developing molecular antennas and energy transfer within RE ions. We expect UCNPs with optimized spectra behavior to meet the increasing demand of potential applications in bioimaging, biological detection, and light conversion. This Account focuses on efforts to control the size and modulate the spectra of UCNPs. We first review efforts in size control. One method is careful control of the synthesis conditions to manipulate particle nucleation and growth, but more recently researchers have learned that the doping conditions can affect the size of UCNPs. In addition, constructing homogeneous core/shell structures can control nanoparticle size by adjusting the shell thickness. After reviewing size control, we consider how diverse applications impose different requirements on excitation and/or emission photons and review recent developments on tuning of UC spectral profiles, especially the extension of excitation/emission wavelengths and the adjustment and purification of emission colors. We describe strategies that employ various dopants and others that build rationally designed nanostructures and nanocomposites to meet these goals. As the understanding of the energy transfer in the UC process has improved, core/shell structures have been proved useful for simultaneous tuning of excitation and emission wavelengths. Finally, we present a number of typical examples to highlight the upconverted emission in various applications, including imaging, detection, and sensing. We believe that with deeper understanding of emission phenomena and the ability to tune spectral profiles, UCNPs could play an important role in light conversion studies and applications.
Journal of Colloid and Interface Science | 2009
Quan Yuan; Hao-Hong Duan; Le-Le Li; Ling-Dong Sun; Ya-Wen Zhang; Chun-Hua Yan
The nanoscience and nanotechniques have brought with new chance for new applications of some traditional materials, for instance, ceria-based materials, which are of great interest due to their wide applications, in particular, as redox or oxygen storage promoters in the three-way catalysts, catalysts for H(2) production from fuels, and solid state conductors for fuel cells. We highlight here current research activities focused on the controlled synthesis and assembly of ceria-based nanomaterials. We begin with a brief introduction to the urgency for research of ceria-based nanomaterials and our different consideration. Typical synthesis is then discussed with examples of nanosized ceria, ceria-zirconia solid solutions, and doped ceria developed by our group and the others. Controlled synthesis to manipulate the shape, crystal plane, and size is the topic of this article, with approaches elaborated for the assembly of ceria-based materials. Finally, we conclude this article with personal understandings and perspectives on this exciting realm.