Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chun-Hui Zhang is active.

Publication


Featured researches published by Chun-Hui Zhang.


Journal of Medicinal Chemistry | 2012

Structural Optimization and Structure–Activity Relationships of N2-(4-(4-Methylpiperazin-1-yl)phenyl)-N8-phenyl-9H-purine-2,8-diamine Derivatives, a New Class of Reversible Kinase Inhibitors Targeting both EGFR-Activating and Resistance Mutations

Jiao Yang; Li-Jiao Wang; Jing-Jing Liu; Lei Zhong; Ren-Lin Zheng; Yong Xu; Pan Ji; Chun-Hui Zhang; Wen-Jing Wang; Xing-Dong Lin; Lin-Li Li; Yuquan Wei; Sheng-Yong Yang

This paper describe the structural optimization of a hit compound, N2-(4-(4-methylpiperazin-1-yl)phenyl)-N8-phenyl-9H-purine-2,8-diamine (1), which is a reversible kinase inhibitor targeting both EGFR-activating and drug-resistance (T790M) mutations but has poor binding affinity. Structure-activity relationship studies led to the identification of 9-cyclopentyl-N2-(4-(4-methylpiperazin-1-yl)phenyl)-N8-phenyl-9H-purine-2,8-diamine (9e) that exhibits significant in vitro antitumor potency against the non-small-cell lung cancer (NSCLC) cell lines HCC827 and H1975, which harbor EGFR-activating and drug-resistance mutations, respectively. Compound 9e was further assessed for potency and selectivity in enzymatic assays and in vivo anti-NSCLC studies. The results indicated that compound 9e is a highly potent kinase inhibitor against both EGFR-activating and resistance mutations and has good kinase spectrum selectivity across the kinome. In vivo, oral administration of compound 9e at a dose of 5 mg/kg caused rapid and complete tumor regression in a HCC827 xenograft model, and an oral dose of 50 mg/kg initiated a considerable antitumor effect in an H1975 xenograft model.


Journal of Medicinal Chemistry | 2015

Design, Synthesis, and Structure–Activity Relationship Studies of 3-(Phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine Derivatives as a New Class of Src Inhibitors with Potent Activities in Models of Triple Negative Breast Cancer

Chun-Hui Zhang; Ming-Wu Zheng; Ya-Ping Li; Xing-Dong Lin; Mei Huang; Lei Zhong; Guo-Bo Li; Rong-Jie Zhang; Wan-Ting Lin; Yan Jiao; Xiao-Ai Wu; Jiao Yang; Rong Xiang; Lijuan Chen; Yinglan Zhao; Wei Cheng; Yuquan Wei; Sheng-Yong Yang

A series of 3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine derivatives were designed and synthesized. Structure-activity relationship (SAR) analysis of these compounds led to the discovery of compound 1j, which showed the highest inhibitory potency against the Src kinase and the most potent antiviability activity against the typical TNBC cell line MDA-MB-231 among all the synthesized compounds. Further kinase inhibition assays showed that compound 1j was a multikinase inhibitor and potently inhibited Src (IC50 = 0.0009 μM) and MAPK signaling protein kinases B-RAF and C-RAF. In an MDA-MB-231 xenograft mouse model, a once-daily dose of compound 1j at 30 mg/kg for 18 days completely suppressed the tumor growth with a tumor inhibition rate larger than 100% without obvious toxicity. It also displayed good pharmacokinetic properties in a preliminary pharmacokinetic assay. Western blot and immunohistochemical assays revealed that compound 1j significantly inhibited Src and MAPK signaling and markedly induced apoptosis in tumor tissues.


Journal of Medicinal Chemistry | 2012

Discovery of the Novel Potent and Selective FLT3 Inhibitor 1-{5-[7-(3- Morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]thiadiazol-2-yl}-3-p-tolylurea and Its Anti-Acute Myeloid Leukemia (AML) Activities in Vitro and in Vivo

Wei-Wei Li; Xiaoyan Wang; Ren-Lin Zheng; Heng-Xiu Yan; Zhi-Xing Cao; Lei Zhong; Ze-Rong Wang; Pan Ji; Ling-Ling Yang; Li-Jiao Wang; Yong Xu; Jing-Jing Liu; Jiao Yang; Chun-Hui Zhang; Shuang Ma; Shan Feng; Qi-Zheng Sun; Yuquan Wei; Sheng-Yong Yang

Structure-activity relationship (SAR) studies of 2-(quinazolin-4-ylthio)thiazole derivatives, which are for optimizing the in vitro and in vivo antiacute myeloid leukemia (AML) activity of a previously identified FLT3 inhibitor 2-(6,7-dimethoxyquinazolin-4-ylthio)thiazole (1), are described. SAR studies centering around the head (thiazole) and tails (6- and 7-positions) of the quinazoline moiety of 1 led to the discovery of a series of compounds that exhibited significantly increased potency against FLT3-driven AML MV4-11 cells. Preliminary in vivo assays were carried out on three highly active compounds, whose results showed that 1-{5-[7-(3-morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]thiadiazol-2-yl}-3-p-tolylurea (20c) had the highest in vivo activity. Further in vitro and in vivo anti-AML studies were then performed on 20c; in an MV4-11 xenograft mouse model, a once-daily dose of 20c at 100 mg/kg for 18 days led to complete tumor regression without obvious toxicity. Western blot and immunohistochemical analysis were carried out to illustrate the mechanism of action of 20c.


Journal of Molecular Graphics & Modelling | 2012

Identification of CK2 inhibitors with new scaffolds by a hybrid virtual screening approach based on Bayesian model; pharmacophore hypothesis and molecular docking

Lei Di-wu; Lin-Li Li; Wen-Jing Wang; Huan-Zhang Xie; Jiao Yang; Chun-Hui Zhang; Qi Huang; Lei Zhong; Shan Feng; Sheng-Yong Yang

Protein kinase casein kinase 2 (CK2), a member of the serine/threonine kinase family, has been established as one of the most attractive targets for molecularly targeted cancer therapy. The discovery of CK2 inhibitors has thus attracted much attention in recent years. In this investigation, a hybrid virtual screening approach based on Bayesian classification model, pharmacophore hypothesis and molecular docking was proposed and employed to identify CK2 inhibitors. We first established a naïve Bayes classification model of CK2 inhibitors/non-inhibitors and pharmacophore hypotheses of CK2 inhibitors. The docking parameters and scoring functions were also optimized in advance. The three virtual screening methods were sequentially used to screen two large chemical libraries, Specs and Enamine, for retrieving new CK2 inhibitors. Finally 30 compounds were selected from the final hits for in vitro CK2 kinase inhibitory assays. Five compounds with completely novel scaffolds showed a good inhibitory potency against CK2, which have good potentials for a future hit-to-lead optimization.


Molecular Cancer Therapeutics | 2016

Preclinical Evaluation of a Novel Orally Available SRC/Raf/VEGFR2 Inhibitor, SKLB646, in the Treatment of Triple-Negative Breast Cancer.

Ming-Wu Zheng; Chun-Hui Zhang; Kai Chen; Mei Huang; Ya-Ping Li; Wan-Ting Lin; Rong-Jie Zhang; Lei Zhong; Rong Xiang; Lin-Li Li; Xin-Yu Liu; Yuquan Wei; Sheng-Yong Yang

Triple-negative breast cancer (TNBC) is the most aggressive and deadly breast cancer subtype. To date, chemotherapy is the only systemic therapy and prognosis remains poor. Herein, we report the preclinical evaluation of SKLB646 in the treatment of TNBC; SKLB646 is a novel multiple kinase inhibitor developed by us recently. This compound potently inhibited SRC and VEGFR2 with IC50 values of 0.002 μmol/L and 0.012 μmol/L, respectively. It also considerably inhibited B-Raf and C-Raf with IC50 values of 0.022 and 0.019 μmol/L, respectively. It exhibited significant antiproliferation and antiviability activities against TNBC cell lines. Studies of mechanism of action indicated that SKLB646 inhibited the activation of SRC signaling and blocked the MAPK signaling through inhibiting the Raf kinases. Interestingly, SKLB646 dose dependently downregulated the expression of Fra1, a transcriptional factor that plays a critical role in the epithelial-to-mesenchymal transition. In addition, SKLB646 could inhibit HUVEC proliferation, migration, and invasion. It effectively blocked the formation of intersegmental vessels in zebrafish embryos and displayed considerable antiangiogenic effects in the tumor-induced neovascularization zebrafish model. In TNBC xenograft models, SKLB646 suppressed the tumor growth in a dose-dependent manner. Moreover, SKLB646 could remarkably inhibit TNBC cell migration and invasion in vitro. Furthermore, in an experimental lung metastasis model, the overall survival time of groups treated with SKLB646 was much longer compared with the control-, dasatinib-, and paclitaxel-treated groups. In a preliminary pharmacokinetic study, SKLB646 showed good pharmacokinetic properties. Taken together, the preclinical data show that SKLB646 could be a promising lead compound for the treatment of TNBC. Mol Cancer Ther; 15(3); 366–78. ©2015 AACR.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of KDM5A inhibitors: Homology modeling, virtual screening and structure-activity relationship analysis.

Xiao-Ai Wu; Zhen Fang; Bo Yang; Lei Zhong; Qiuyuan Yang; Chun-Hui Zhang; Shen-Zhen Huang; Rong Xiang; Takayoshi Suzuki; Lin-Li Li; Sheng-Yong Yang

Herein we report the discovery of a series of new KDM5A inhibitors. A three-dimensional (3D) structure model of KDM5A jumonji domain was firstly established based on homology modeling. Molecular docking-based virtual screening was then performed against commercial chemical databases. A number of hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the most active hit compound, 9 (IC50: 2.3 μM), which led to the discovery of several new KDM5A inhibitors. Among them, compound 15e is the most potent one with an IC50 value of 0.22 μM against KDM5A. This compound showed good selectivity for KDM5A and considerable ability to suppress the demethylation of H3K4me3 in intact cells. Compound 15e could be taken as a good lead compound for further studies.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery and structure-activity analysis of 4-((5-nitropyrimidin-4-yl)amino)benzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors.

Xuri Yu; Yun Tang; Wen-Jing Wang; Sen Ji; Shuang Ma; Lei Zhong; Chun-Hui Zhang; Jiao Yang; Xiao-Ai Wu; Zheng-Yan Fu; Lin-Li Li; Sheng-Yong Yang

Despite a potential application of PRMT1 inhibitors in cancer treatment, very few of PRMT1 inhibitors have been reported. To obtain novel potent PRMT1 inhibitors, structure optimizations towards a hit compound, 4-((6-chloro-5-nitropyrimidin-4-yl)amino)benzimidamide, were carried out. A series of 4-((5-nitropyrimidin-4-yl)amino)benzimidamide derivatives were synthesized. Structure-activity relationship analysis led to the discovery of a number of PRMT1 inhibitors. The most potent compound corresponds to compound 6d, which showed an IC50 value of 2.0 μM against PRMT1. This compound also displayed a considerable anti-proliferative activity against three tumor cell lines, DLD-1, T24 and SH-SY-5Y, with IC50 values of 4.4 μM, 13.1 μM and 11.4 μM, respectively.


Theranostics | 2017

Progress of small molecular inhibitors in the development of anti-influenza virus agents

Xiaoai Wu(; Chun-Hui Zhang; Lin Li; Xiuli Wu(; Qi-Zheng Sun; Sheng-Yong Yang; Zhiyun Jia

The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of 6-phenylimidazo[2,1-b]thiazole derivatives as a new type of FLT3 inhibitors

Xing-Dong Lin; Hui-Wen Yang; Shuang Ma; Wei-Wei Li; Chun-Hui Zhang; Wen-Jing Wang; Rong Xiang; Lin-Li Li; Sheng-Yong Yang

In this investigation, a series of 6-phenylimidazo[2,1-b]thiazole derivatives were synthesized. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell line MV4-11, but very weak or no activity against FLT3-independent human cervical cancer cell line Hela. FLT3 kinase inhibition assays were then performed on the three most active compounds. Among these compounds, 6-(4-(3-(5-(tert-butyl)isoxazol- 3-yl)ureido)phenyl)-N-(3-(dimethylamino)propyl)imidazo[2,1-b]thiazole-3-carboxamide (19) exhibited the highest potency in both cellular (MV4-11, IC50: 0.002 μM) and enzymatic (FLT3, IC50: 0.022 μM) assays. Further in-depth in vitro anti-AML activity and mechanism of action studies were carried out on compound 19.


Journal of Biomolecular Structure & Dynamics | 2013

Retrieving novel C5aR antagonists using a hybrid ligand-based virtual screening protocol based on SVM classification and pharmacophore models.

Xiao-Yu Qing; Chun-Hui Zhang; Lin-Li Li; Pan Ji; Shuang Ma; Hua-Lin Wan; Ze-Rong Wang; Jun Zou; Sheng-Yong Yang

C5aR antagonists have been thought as potential immune mediators in various inflammatory and autoimmune diseases, and discovery of C5aR antagonists has attracted much attention in recent years. The discovery of C5aR antagonists was usually achieved through high-throughput screening, which usually suffered a high cost and a low success rate. Currently, the fast developing computer-aided virtual screening (VS) methods provide economic and rapid approaches to the lead discovery. In this account, we proposed a hybrid ligand-based VS protocol that is based on support vector machine (SVM) classification and pharmacophore models for retrieving novel C5aR antagonists. Performance evaluation of this hybrid VS protocol in virtual screening against a large independent test set, T-CHEM, showed that the hybrid VS approach significantly increased the hit rate and enrichment factor compared with the individual SVM classification model-based VS and pharmacophore model-based VS, as well as molecular docking-based VS in that the receptor structure was created by homology modeling. The hybrid VS approach was then used to screen several large chemical libraries including PubChem, Specs, and Enamine. Finally, a total of 20 compounds were selected from the top ranking hits, and shifted to the subsequent in vitro and in vivo studies, which results will be reported in the near future.

Collaboration


Dive into the Chun-Hui Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge