Chun Ning Lau
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chun Ning Lau.
Nano Letters | 2008
Alexander A. Balandin; S. Ghosh; Wenzhong Bao; Irene Calizo; Desalegne Teweldebrhan; Feng Miao; Chun Ning Lau
We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.44)x10(3) to (5.30+/-0.48)x10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.
Nature Nanotechnology | 2009
Wenzhong Bao; Feng Miao; Zhen Chen; Hang Zhang; Wanyoung Jang; Chris Dames; Chun Ning Lau
Graphene is the natures thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphenes thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Graphene is natures thinnest elastic material and displays exceptional mechanical and electronic properties. Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials. The ability to control ripple structure in graphene could allow device design based on local strain and selective bandgap engineering. Here, we report the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains. We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and making use of graphenes negative thermal expansion coefficient (TEC), which we measure to be much larger than that of graphite. These results elucidate the ripple formation process, which can be understood in terms of classical thin-film elasticity theory. This should lead to an improved understanding of suspended graphene devices, a controlled engineering of thermal stress in large-scale graphene electronics, and a systematic investigation of the effect of ripples on the electronic properties of graphene.
Nature Materials | 2010
S. Ghosh; Wenzhong Bao; Denis L. Nika; Samia Subrina; E. P. Pokatilov; Chun Ning Lau; Alexander A. Balandin
Graphene, in addition to its unique electronic and optical properties, reveals unusually high thermal conductivity. The fact that the thermal conductivity of large enough graphene sheets should be higher than that of basal planes of bulk graphite was predicted theoretically by Klemens. However, the exact mechanisms behind the drastic alteration of a materials intrinsic ability to conduct heat as its dimensionality changes from two to three dimensions remain elusive. The recent availability of high-quality few-layer graphene (FLG) materials allowed us to study dimensional crossover experimentally. Here we show that the room-temperature thermal conductivity changes from approximately 2,800 to approximately 1,300 W m(-1) K(-1) as the number of atomic planes in FLG increases from 2 to 4. We explained the observed evolution from two dimensions to bulk by the cross-plane coupling of the low-energy phonons and changes in the phonon Umklapp scattering. The obtained results shed light on heat conduction in low-dimensional materials and may open up FLG applications in thermal management of nanoelectronics.
Nano Letters | 2010
Sandip Niyogi; Elena Bekyarova; Mikhail E. Itkis; Hang Zhang; Kristin Shepperd; Jeremy Hicks; Michael Sprinkle; Claire Berger; Chun Ning Lau; Walt deHeer; Edward H. Conrad; Robert C. Haddon
In order to engineer a band gap into graphene, covalent bond-forming reactions can be used to change the hybridization of the graphitic atoms from sp(2) to sp(3), thereby modifying the conjugation length of the delocalized carbon lattice; similar side-wall chemistry has been shown to introduce a band gap into metallic single-walled carbon nanotubes. Here we demonstrate that the application of such covalent bond-forming chemistry modifies the periodicity of the graphene network thereby introducing a band gap (∼0.4 eV), which is observable in the angle-resolved photoelectron spectroscopy of aryl-functionalized graphene. We further show that the chemically-induced changes can be detected by Raman spectroscopy; the in-plane vibrations of the conjugated π-bonds exhibit characteristic Raman spectra and we find that the changes in D, G, and 2D-bands as a result of chemical functionalization of the graphene basal plane are quite distinct from that due to localized, physical defects in sp(2)-conjugated carbon.
Nano Letters | 2011
Zhe Fei; G. O. Andreev; Wenzhong Bao; Lingfeng M. Zhang; Alexander S. McLeod; Chen Wang; Margaret K. Stewart; Zeng Zhao; G. Dominguez; Mark H. Thiemens; Michael M. Fogler; Michael J. Tauber; Antonio H. Castro-Neto; Chun Ning Lau; Fritz Keilmann; D. N. Basov
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO(2) substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.
Nano Letters | 2008
Brian Standley; Wenzhong Bao; Hang Zhang; Jehoshua Bruck; Chun Ning Lau; Marc Bockrath
Graphenes remarkable mechanical and electrical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive material for novel computing devices. We report the development of a nonvolatile memory element based on graphene break junctions. Our devices have demonstrated thousands of writing cycles and long retention times. We propose a model for device operation based on the formation and breaking of carbon atomic chains that bridge the junctions. We demonstrate information storage based on the concept of rank coding, in which information is stored in the relative conductance of graphene switches in a memory cell.
Physical Review Letters | 2009
Peng Wei; Wenzhong Bao; Yong Pu; Chun Ning Lau; Jing Shi
We report a thermoelectric study of graphene in both zero and applied magnetic fields. As a direct consequence of the linear dispersion of massless particles, we find that the Seebeck coefficient Sxx diverges with 1/sqrt[|n_{2D}|], where n_{2D} is the carrier density. We observe a very large Nernst signal S_{xy} ( approximately 50 microV/K at 8 T) at the Dirac point, and an oscillatory dependence of both Sxx and S_{xy} on n_{2D} at low temperatures. Our results underscore the anomalous thermoelectric transport in graphene, which may be used as a highly sensitive probe for impurity bands near the Dirac point.
Nature Physics | 2011
Wenzhong Bao; Lei Jing; Jairo Velasco; Y.-W. Lee; Gang Liu; D. Tran; Brian Standley; Mehmet Aykol; Stephen B. Cronin; Dmitry Smirnov; Mikito Koshino; Edward McCann; Marc Bockrath; Chun Ning Lau
Graphene is an extraordinary two-dimensional (2D) system with chiral charge carriers and fascinating electronic, mechanical and thermal properties. In multilayer graphene, stacking order provides an important yet rarely explored degree of freedom for tuning its electronic properties. For instance, Bernal-stacked trilayer graphene (B-TLG) is semi-metallic with a tunable band overlap, and rhombohedral-stacked trilayer graphene (r-TLG) is predicted to be semiconducting with a tunable band gap. These multilayer graphenes are also expected to exhibit rich novel phenomena at low charge densities owing to enhanced electronic interactions and competing symmetries. Here we demonstrate the dramatically different transport properties in TLG with different stacking orders, and the unexpected spontaneous gap opening in charge neutral r-TLG. At the Dirac point, B-TLG remains metallic, whereas r-TLG becomes insulating with an intrinsic interaction-driven gap ~6 meV. In magnetic fields, well-developed quantum Hall (QH) plateaux in r-TLG split into three branches at higher fields. Such splitting is a signature of the Lifshitz transition, a topological change in the Fermi surface, that is found only in r-TLG. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications.
Applied Physics Letters | 2007
Irene Calizo; Wenzhong Bao; Feng Miao; Chun Ning Lau; Alexander A. Balandin
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The obtained results are important for graphene characterization and its proposed graphene applications in electronic devices.The authors investigated the influence of substrates on Raman scattering spectrum from graphene. The room-temperature Raman signatures from graphene layers on GaAs, sapphire, and glass substrates were compared with those from graphene on the standard Si∕SiO2 (300nm) substrate, which served as a reference. It was found that while G peak of graphene on Si∕SiO2 and GaAs is positioned at 1580cm−1, it is downshifted by ∼5cm−1 for graphene on sapphire and, in some cases, splits into doublets for graphene on glass with the central frequency around 1580cm−1. The obtained results are important for nanometrology of graphene and graphene-based devices.
Nano Letters | 2010
Wanyoung Jang; Zhen Chen; Wenzhong Bao; Chun Ning Lau; Chris Dames
The thermal conductivity of graphene and ultrathin graphite (thickness from 1 to ∼20 layers) encased within silicon dioxide was measured using a heat spreader method. The thermal conductivity increases with the number of graphene layers, approaching the in-plane thermal conductivity of bulk graphite for the thickest samples, while showing suppression below 160 W/m-K at room temperature for single-layer graphene. These results show the strong effect of the encasing oxide in disrupting the thermal conductivity of adjacent graphene layers, an effect that penetrates a characteristic distance of approximately 2.5 nm (∼7 layers) into the core layers at room temperature.