Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chun-Shu Chen is active.

Publication


Featured researches published by Chun-Shu Chen.


Journal of the American Statistical Association | 2007

Optimal Geostatistical Model Selection

Hsin-Cheng Huang; Chun-Shu Chen

In many fields of science, predicting variables of interest over a study region based on noisy data observed at some locations is an important problem. Two popular methods for the problem are kriging and smoothing splines. The former assumes that the underlying process is stochastic, whereas the latter assumes it is purely deterministic. Kriging performs better than smoothing splines in some situations, but is outperformed by smoothing splines in others. However, little is known regarding selecting between kriging and smoothing splines. In addition, how to perform variable selection in a geostatistical model has not been well studied. In this article we propose a general methodology for selecting among arbitrary spatial prediction methods based on (approximately) unbiased estimation of mean squared prediction errors using a data perturbation technique. The proposed method accounts for estimation uncertainty in both kriging and smoothing spline predictors, and is shown to be optimal in terms of two mean squared prediction error criteria. A simulation experiment is performed to demonstrate the effectiveness of the proposed methodology. The proposed method is also applied to a water acidity data set by selecting important variables responsible for water acidity based on a spatial regression model. Moreover, a new method is proposed for estimating the noise variance that is robust and performs better than some well-known methods.


Environmental and Ecological Statistics | 2012

Geostatistical model averaging based on conditional information criteria

Chun-Shu Chen; Hsin-Cheng Huang

Variable selection in geostatistical regression is an important problem, but has not been well studied in the literature. In this paper, we focus on spatial prediction and consider a class of conditional information criteria indexed by a penalty parameter. Instead of applying a fixed criterion, which leads to an unstable predictor in the sense that it is discontinuous with respect to the response variables due to that a small change in the response may cause a different model to be selected, we further stabilize the predictor by local model averaging, resulting in a predictor that is not only continuous but also differentiable even after plugging-in estimated model parameters. Then Stein’s unbiased risk estimate is applied to select the penalty parameter, leading to a data-dependent penalty that is adaptive to the underlying model. Some numerical experiments show superiority of the proposed model averaging method over some commonly used variable selection methods. In addition, the proposed method is applied to a mercury data set for lakes in Maine.


Stochastic Environmental Research and Risk Assessment | 2012

Spatial risk assessment of typhoon cumulated rainfall: a case study in Taipei area

Yun-Huan Lee; Hong-Ding Yang; Chun-Shu Chen

Typhoon is one of the most destructive disasters in Taiwan, which usually causes many floods and mudslides and prevents the electrical and water supply. Prior to its arrival, how to accurately forecast the path and rainfall of typhoon are important issues. In the past, a regression-based model was the most applied statistical method to evaluate the associated problems. However, it generally ignored the spatial dependence in the data, resulting in less accurate estimation and prediction, and the importance of particular explanatory variables may not be apparent. Therefore, in this paper we focus on assessing the spatial risk variations regarding the typhoon cumulated rainfall at Taipei with respect to typhoon locations by using the spatial hierarchical Bayesian model combined with the spatial conditional autoregressive model, where the model parameters are estimated by designing a family of stochastic algorithms based on a Markov chain Monte Carlo technique. The proposed method is applied to a real data set of Taiwan for illustration. Also, some important explanatory variables regarding the typhoon cumulated rainfall at Taipei are indicated as well.


Stochastic Environmental Research and Risk Assessment | 2018

A composite spatial predictor via local criteria under a misspecified model

Chun-Shu Chen; Chao-Sheng Chen

Spatial prediction and variable selection for the study area are both important issues in geostatistics. If spatially varying means exist among different subareas, globally fitting a spatial regression model for observations over the study area may be not suitable. To alleviate deviations from spatial model assumptions, this paper proposes a methodology to locally select variables for each subarea based on a locally empirical conditional Akaike information criterion. In this situation, the global spatial dependence of observations is considered and the local characteristics of each subarea are also identified. It results in a composite spatial predictor which provides a more accurate spatial prediction for the response variables of interest in terms of the mean squared prediction errors. Further, the corresponding prediction variance is also evaluated based on a resampling method. Statistical inferences of the proposed methodology are justified both theoretically and numerically. Finally, an application of a mercury data set for lakes in Maine, USA is analyzed for illustration.


Journal of Applied Statistics | 2012

Autoregressive model selection based on a prediction perspective

Yun-Huan Lee; Chun-Shu Chen

The autoregressive (AR) model is a popular method for fitting and prediction in analyzing time-dependent data, where selecting an accurate model among considered orders is a crucial issue. Two commonly used selection criteria are the Akaike information criterion and the Bayesian information criterion. However, the two criteria are known to suffer potential problems regarding overfit and underfit, respectively. Therefore, using them would perform well in some situations, but poorly in others. In this paper, we propose a new criterion in terms of the prediction perspective based on the concept of generalized degrees of freedom for AR model selection. We derive an approximately unbiased estimator of mean-squared prediction errors based on a data perturbation technique for selecting the order parameter, where the estimation uncertainty involved in a modeling procedure is considered. Some numerical experiments are performed to illustrate the superiority of the proposed method over some commonly used order selection criteria. Finally, the methodology is applied to a real data example to predict the weekly rate of return on the stock price of Taiwan Semiconductor Manufacturing Company and the results indicate that the proposed method is satisfactory.


Journal of Applied Statistics | 2012

A jackknife-based versatile test for two-sample problems with right-censored data

Yu-Mei Chang; Chun-Shu Chen; Pao-Sheng Shen

For testing the equality of two survival functions, the weighted logrank test and the weighted Kaplan–Meier test are the two most widely used methods. Actually, each of these tests has advantages and defects against various alternatives, while we cannot specify in advance the possible types of the survival differences. Hence, how to choose a single test or combine a number of competitive tests for indicating the diversities of two survival functions without suffering a substantial loss in power is an important issue. Instead of directly using a particular test which generally performs well in some situations and poorly in others, we further consider a class of tests indexed by a weighted parameter for testing the equality of two survival functions in this paper. A delete-1 jackknife method is implemented for selecting weights such that the variance of the test is minimized. Some numerical experiments are performed under various alternatives for illustrating the superiority of the proposed method. Finally, the proposed testing procedure is applied to two real-data examples as well.


Journal of Applied Statistics | 2011

A joint modeling approach for spatial earthquake risk variations

Chun-Shu Chen; Hong-Ding Yang

Modeling spatial patterns and processes to assess the spatial variations of data over a study region is an important issue in many fields. In this paper, we focus on investigating the spatial variations of earthquake risks after a main shock. Although earthquake risks have been extensively studied in the literatures, to our knowledge, there does not exist a suitable spatial model for assessing the problem. Therefore, we propose a joint modeling approach based on spatial hierarchical Bayesian models and spatial conditional autoregressive models to describe the spatial variations in earthquake risks over the study region during two periods. A family of stochastic algorithms based on a Markov chain Monte Carlo technique is then performed for posterior computations. The probabilistic issue for the changes of earthquake risks after a main shock is also discussed. Finally, the proposed method is applied to the earthquake records for Taiwan before and after the Chi-Chi earthquake.


Communications in Statistics-theory and Methods | 2018

Some characteristics on the selection of spline smoothing parameter

Chun-Shu Chen; Yi-Tsz Huang

ABSTRACT The smoothing spline method is used to fit a curve to a noisy data set, where selection of the smoothing parameter is essential. An adaptive Cp criterion (Chen and Huang 2011) based on the Stein’s unbiased risk estimate has been proposed to select the smoothing parameter, which not only considers the usual effective degrees of freedom but also takes into account the selection variability. The resulting fitted curve has been shown to be superior and more stable than commonly used selection criteria and possesses the same asymptotic optimality as Cp. In this paper, we further discuss some characteristics on the selection of smoothing parameter, especially for the selection variability.


Communications in Statistics-theory and Methods | 2017

Adaptive Cox Model Averaging for Right-Censored Data

Yu-Mei Chang; Pao-Sheng Shen; Chun-Shu Chen

ABSTRACT In medical studies, Cox proportional hazards model is a commonly used method to deal with the right-censored survival data accompanied by many explanatory covariates. In practice, the Akaikes information criterion (AIC) or the Bayesian information criterion (BIC) is usually used to select an appropriate subset of covariates. It is well known that neither the AIC criterion nor the BIC criterion dominates for all situations. In this paper, we propose an adaptive-Cox model averaging procedure to get a more robust hazard estimator. First, by applying AIC and BIC criteria to perturbed datasets, we obtain two model averaging (MA) estimated survival curves, called AIC-MA and BIC-MA. Then, based on Kullback–Leibler loss, a better estimate of survival curve between AIC-MA and BIC-MA is chosen, which results in an adaptive-Cox estimate of survival curve. Simulation results show the superiority of our approach and an application of the proposed method is also presented by analyzing the German Breast Cancer Study dataset.


Journal of Statistical Planning and Inference | 2011

An improved Cp criterion for spline smoothing

Chun-Shu Chen; Hsin-Cheng Huang

Collaboration


Dive into the Chun-Shu Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Ding Yang

National Changhua University of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao-Sheng Chen

National Changhua University of Education

View shared research outputs
Top Co-Authors

Avatar

Yi-Tsz Huang

National Changhua University of Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge