Chun Wie Chong
International Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chun Wie Chong.
Scientific Reports | 2015
Chun Wie Chong; Arine Fadzlun Ahmad; Yvonne A. L. Lim; Cindy Shuan Ju Teh; Ivan K. S. Yap; Soo Ching Lee; Yuee Teng Chin; P’ng Loke; Kek Heng Chua
Gut microbiota plays an important role in mammalian host metabolism and physiological functions. The functions are particularly important in young children where rapid mental and physical developments are taking place. Nevertheless, little is known about the gut microbiome and the factors that contribute to microbial variation in the gut of South East Asian children. Here, we compared the gut bacterial richness and composition of pre-adolescence in Northern Malaysia. Our subjects covered three distinct ethnic groups with relatively narrow range of socioeconomic discrepancy. These included the Malays (n = 24), Chinese (n = 17) and the Orang Asli (indigenous) (n = 20). Our results suggested a strong ethnicity and socioeconomic-linked bacterial diversity. Highest bacterial diversity was detected from the economically deprived indigenous children while the lowest diversity was recorded from the relatively wealthy Chinese children. In addition, predicted functional metagenome profiling suggested an over-representation of pathways pertinent to bacterial colonisation and chemotaxis in the former while the latter exhibited enriched gene pathways related to sugar metabolism.
PeerJ | 2016
Noorfatin Jihan Zulkefli; Vanitha Mariappan; Kumutha Malar Vellasamy; Chun Wie Chong; Kwai Lin Thong; Sasheela A. Ponnampalavanar; Jamuna Vadivelu; Cindy Shuan Ju Teh
Background. Central intermediary metabolism (CIM) in bacteria is defined as a set of metabolic biochemical reactions within a cell, which is essential for the cell to survive in response to environmental perturbations. The genes associated with CIM are commonly found in both pathogenic and non-pathogenic strains. As these genes are involved in vital metabolic processes of bacteria, we explored the efficiency of the genes in genotypic characterization of Burkholderia pseudomallei isolates, compared with the established pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) schemes. Methods. Nine previously sequenced B. pseudomallei isolates from Malaysia were characterized by PFGE, MLST and CIM genes. The isolates were later compared to the other 39 B. pseudomallei strains, retrieved from GenBank using both MLST and sequence analysis of CIM genes. UniFrac and hierachical clustering analyses were performed using the results generated by both MLST and sequence analysis of CIM genes. Results. Genetic relatedness of nine Malaysian B. pseudomallei isolates and the other 39 strains was investigated. The nine Malaysian isolates were subtyped into six PFGE profiles, four MLST profiles and five sequence types based on CIM genes alignment. All methods demonstrated the clonality of OB and CB as well as CMS and THE. However, PFGE showed less than 70% similarity between a pair of morphology variants, OS and OB. In contrast, OS was identical to the soil isolate, MARAN. To have a better understanding of the genetic diversity of B. pseudomallei worldwide, we further aligned the sequences of genes used in MLST and genes associated with CIM for the nine Malaysian isolates and 39 B. pseudomallei strains from NCBI database. Overall, based on the CIM genes, the strains were subtyped into 33 profiles where majority of the strains from Asian countries were clustered together. On the other hand, MLST resolved the isolates into 31 profiles which formed three clusters. Hierarchical clustering using UniFrac distance suggested that the isolates from Australia were genetically distinct from the Asian isolates. Nevertheless, statistical significant differences were detected between isolates from Malaysia, Thailand and Australia. Discussion. Overall, PFGE showed higher discriminative power in clustering the nine Malaysian B. pseudomallei isolates and indicated its suitability for localized epidemiological study. Compared to MLST, CIM genes showed higher resolution in distinguishing those non-related strains and better clustering of strains from different geographical regions. A closer genetic relatedness of Malaysian isolates with all Asian strains in comparison to Australian strains was observed. This finding was supported by UniFrac analysis which resulted in geographical segregation between Australia and the Asian countries.
Metabolomics | 2017
Ye Mun Low; Ivan K. S. Yap; Kartini Abdul Jabar; Mohd Yasim Md Yusof; Chun Wie Chong; Cindy Shuan Ju Teh
IntroductionGenotype and metabolomic variation are important for bacterial survival and adaptation to environmental changes.ObjectivesIn this study, we compared the relationship among Klebsiella pneumoniae strains based on their genotypic and metabolic profiles. In addition, we also evaluated the association of the relationship with beta-lactamase production.MethodsA total of 53 K. pneumoniae strains isolated in 2013–2014 from a tertiary teaching hospital in Malaysia were subjected to antimicrobial susceptibility testing (AST) via disk diffusion method and beta-lactamase production confirmation. The bacterial strains were also typed genotypically and metabolically via REP-PCR and 1H-NMR spectroscopy respectively. The concordance of the matrices derived based on genotypic and metabolic characterization was measured based on Spearman’s rank correlation.ResultsSpearman’s correlation rank showed that there is a weak but significant negative correlation between the genetic fingerprints and metabolic profiles of K. pneumoniae. Specifically, K. pneumoniae strains were clustered into five major clusters based on REP-PCR where most of the carbapenem resistant K. pneumoniae (CRKP) strains made up the major cluster. In contrast, metabolic patterns of the three groups (i.e. CRKP, extended spectrum beta-lactamase producing K. pneumoniae (ESBL), susceptible) of K. pneumoniae were clearly differentiated on PLS-DA score plots derived from 1H-NMR spectroscopy.ConclusionOverall, this study showed that metabolomic profiling using 1H-NMR spectroscopy is able to discriminate K. pneumoniae strains based on their beta-lactamase production status.
Pathogens and Global Health | 2016
Polly Soo-Xi Yap; Azanna Ahmad Kamar; Chun Wie Chong; Ivan K. S. Yap; Kwai Lin Thong; Yao Mun Choo; Mohd Yasim Md Yusof; Cindy Shuan Ju Teh
The prevalence and antibiotic susceptibility of intestinal carriage of Gram-negative bacteria among preterm infants admitted to the neonatal intensive care unit (NICU) in a tertiary teaching hospital in Malaysia were determined. A total of 34 stool specimens were obtained from preterm infants upon admission and once weekly up to two weeks during hospitalization. The presumptive colonies of Escherichia coli and Klebsiella pneumoniae were selected for identification, antibiotic susceptibility testing, and subtyping by using pulsed-field gel electrophoresis (PFGE). Out of 76 Gram-negative isolates, highest resistance was detected for amoxicillin/clavulanate (30.8%, n = 16), ceftriaxone (42.3%, n = 22), ceftazidime (28.8%, n = 15), cefoxitin (28.8%, n = 15), aztreonam (36.5%, n = 19), and polymyxin B (23.1%, n = 12). Three colistin resistant K. pneumoniae have also been detected based on E-test analysis. Thirty-nine isolates of K. pneumoniae and 20 isolates of E. coli were resistant to more than three antimicrobial classes and were categorized as multidrug resistant (MDR). PFGE analysis revealed a higher diversity in pulsotypes for K. pneumoniae (18 pulsotypes) in comparison to E. coli (four pulsotypes). In addition, a total of fifteen pulsotypes was observed from 39 MDR K. pneumoniae. The risk factors for antibiotic resistance were assessed using random forest analysis. Gender was found to be the most important predictor for colistin resistant while length, OFC, and delivery mode were showing greater predictive power in the polymyxin B resistance. This study revealed worrying prevalence rates of intestinal carriage of multidrug-resistant K. pneumoniae and E. coli of hospitalized preterm infants in Malaysia, particularly high resistance to polymyxins.
PeerJ | 2018
Shiang Chiet Tan; Chun Wie Chong; Cindy Shuan Ju Teh; Peck Toung Ooi; Kwai Lin Thong
Background Enterococcus faecalis and Enterococcus faecium are ubiquitous opportunistic pathogens found in the guts of humans and farmed animals. This study aimed to determine the occurrence, antimicrobial resistance, virulence, biofilm-forming ability and genotypes of E. faecalis and E. faecium from swine farms. Correlations between the genotypes, virulotypes, antibiotic resistance, and the environmental factors such as locality of farms and farm hygiene practice were explored. Methods E. faecalis and E. faecium strains were isolated from the oral, rectal and fecal samples of 140 pigs; nasal, urine and fecal samples of 34 farmers working in the farms and 42 environmental samples collected from seven swine farms located in Peninsular Malaysia. Antibiotic susceptibility test was performed using the disk diffusion method, and the antibiotic resistance and virulence genes were detected by Polymerase Chain Reaction. Repetitive Extragenic Palindromic-Polymerase Chain Reaction and Pulsed-Field Gel Electrophoresis were performed to determine the clonality of the strains. Crosstab/Chi-square test and DistLM statistical analyses methods were used to determine the correlations between the genotypes, virulence factors, antibiotic resistance, and the environmental factors. Results A total of 211 E. faecalis and 42 E. faecium were recovered from 140 pigs, 34 farmers and 42 environmental samples collected from seven swine farms in Peninsular Malaysia. Ninety-eight percent of the strains were multidrug-resistant (resistant to chloramphenicol, tetracycline, ciprofloxacin and erythromycin). Fifty-two percent of the strains formed biofilms. Virulence genes efa, asaI, gelE, esp, cyl and ace genes were detected. Virulence genes efa and asaI were most prevalent in E. faecalis (90%) and E. faecium (43%), respectively. Cluster analyses based on REP-PCR and PFGE showed the strains were genetically diverse. Overall, the strains isolated from pigs and farmers were distinct, except for three highly similar strains found in pigs and farmers. The strains were regional- and host-specific. Discussion This study revealed alarming high frequencies of multidrug-resistant enterococci in pigs and swine farmers. The presence of resistance and virulence genes and the ability to form biofilm further enhance the persistence and pathogenicity of the strains. Although the overall clonality of the strains were regionals and host-specific, strains with high similarity were found in different hosts. This study reiterates a need of a more stringent regulation to ensure the proper use of antibiotics in swine husbandry to reduce the wide spread of multidrug-resistant strains.
Intervirology | 2018
Yeh Fong Tan; Chai Ying Lim; Chun Wie Chong; Patricia Kim Chooi Lim; Ivan K. S. Yap; Pooi Pooi Leong; Kenny Voon
Background: The giant amoebal viruses of Mimivirus and Marseillevirus are large DNA viruses and have been documented in water, soil, and sewage samples. The trend of discovering these giant amoebal viruses has been increasing throughout Asia with Japan, India, and Saudi Arabia being the latest countries to document the presence of these viruses. To date, there have been no reports of large amoebal viruses being isolated in South East Asia. Objective: In this study, we aim to discover these viruses from soil samples in an aboriginal village (Serendah village) in Peninsular Malaysia. Method and Results: We successfully detected and isolated both Mimivirus-like and Marseillevirus-like viruses using Acanthamoeba castellanii. Phylogeny analysis identified them as Mimivirus and Marseillevirus, respectively. Conclusion: The ubiquitous nature of both Mimivirus and Marseillevirus is further confirmed in our study as they are detected in higher quantity in soil that is near to water vicinities in an aboriginal village in Peninsular Malaysia. However, this study is limited by our inability to investigate the impact of Mimivirus and Marseillevirus on the aboriginal villagers. More studies on the potential impact of these viruses on human health, especially on the aborigines, are warranted.
Infectious Diseases of Poverty | 2016
Yuee Teng Chin; Yvonne A. L. Lim; Chun Wie Chong; Cindy Shuan Ju Teh; Ivan K. S. Yap; Soo Ching Lee; Mian Zi Tee; Vinnie Wei Yin Siow; Kek Heng Chua
Movement Disorders | 2018
Ai Huey Tan; Chun Wie Chong; Sze-Looi Song; Cindy Shuan Ju Teh; Ivan K. S. Yap; Mun Fai Loke; Yong Qi Tan; Hoi Sen Yong; Sanjiv Mahadeva; Anthony E. Lang; Shen-Yang Lim
Molecular BioSystems | 2015
Ivan K. S. Yap; Mee Teck Kho; Swee Hua Erin Lim; Nor Hadiani Ismail; Wai Keat Yam; Chun Wie Chong
Parasitology Open | 2016
Mee Teck Kho; Chun Wie Chong; Erin Swee Hua Lim; Nor Hadiani Ismail; Lachlan Oliver Draper; Wai Keat Yam; Patricia Kim Chooi Lim; Joon Wah Mak; Ivan K. S. Yap