Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunfa Huang is active.

Publication


Featured researches published by Chunfa Huang.


Journal of The American Society of Nephrology | 2002

Functional Characterization of a Calcium-Sensing Receptor Mutation in Severe Autosomal Dominant Hypocalcemia with a Bartter-Like Syndrome

Rosa Vargas-Poussou; Chunfa Huang; Philippe Hulin; Pascal Houillier; Xavier Jeunemaitre; Michel Paillard; Gabrielle Planelles; Michèle Déchaux; R. Tyler Miller; Corinne Antignac

The extracellular Ca(2+)-sensing receptor (CaSR) plays an essential role in extracellular Ca(2+) homeostasis by regulating the rate of parathyroid hormone (PTH) secretion and the rate of calcium reabsorption by the kidney. Activation of the renal CaSR is thought to inhibit paracellular divalent cation reabsorption in the cortical ascending limb (cTAL) both directly and indirectly via a decrease in NaCl transport. However, in patients with autosomal dominant hypocalcemia (ADH), caused by CaSR gain-of-function mutations, a defect in tubular NaCl reabsorption with renal loss of NaCl has not been described so far. This article describes a patient with ADH due to a gain-of-function mutation in the CaSR, L125P, associated with a Bartter-like syndrome that is characterized by a decrease in distal tubular fractional chloride reabsorption rate and negative NaCl balance with secondary hyperaldosteronism and hypokalemia. The kinetics of activation of the L125P mutant receptor expressed in HEK-293 cells, assessed by measuring CaSR-stimulated changes in intracellular Ca(2+) and ERK activity, showed a dramatic reduction in the EC(50) for extracellular Ca(2+) compared with the wild-type and a loss-of-function mutant CaSR (I40F). This study describes the first case of ADH associated with a Bartter-like syndrome. It is herein proposed that the L125P mutation of the CaSR, which represents the most potent gain-of-function mutation reported so far, may reduce NaCl reabsorption in the cTAL sufficiently to result in renal loss of NaCl with secondary hyperaldosteronism and hypokalemia.


Journal of Biological Chemistry | 2001

The Ca2+-sensing Receptor Activates Cytosolic Phospholipase A2 via a Gqα-dependent ERK-independent Pathway

Mary E. Handlogten; Chunfa Huang; Naoki Shiraishi; Hisataka Awata; R. Tyler Miller

The Ca2+-sensing receptor (CaR) stimulates a number of phospholipase activities, but the specific phospholipases and the mechanisms by which the CaR activates them are not defined. We investigated regulation of phospholipase A2(PLA2) by the Ca2+-sensing receptor (CaR) in human embryonic kidney 293 cells that express either the wild-type receptor or a nonfunctional mutant (R796W) CaR. The PLA2activity was attributable to cytosolic PLA2(cPLA2) based on its inhibition by arachidonyl trifluoromethyl ketone, lack of inhibition by bromoenol lactone, and enhancement of the CaR-stimulated phospholipase activity by coexpression of a cDNA encoding the 85-kDa human cPLA2. No CaR-stimulated cPLA2 activity was found in the cells that expressed the mutant CaR. Pertussis toxin treatment had a minimal effect on CaR-stimulated arachidonic acid release and the CaR-stimulated rise in intracellular Ca2+(Ca2+ i ), whereas inhibition of phospholipase C (PLC) with U73122 completely inhibited CaR-stimulated PLC and cPLA2 activities. CaR-stimulated PLC activity was inhibited by expression of RGS4, an RGS (Regulator of Gprotein Signaling) protein that inhibits Gαqactivity. CaR-stimulated cPLA2 activity was inhibited 80% by chelation of extracellular Ca2+ and depletion of intracellular Ca2+ with EGTA and inhibited 90% by treatment with W7, a calmodulin inhibitor, or with KN-93, an inhibitor of Ca2+, calmodulin-dependent protein kinases. Chemical inhibitors of the ERK activator, MEK, and a dominant negative MEK, MEKK97R, had no effect on CaR-stimulated cPLA2 activity but inhibited CaR-stimulated ERK activity. These results demonstrate that the CaR activates cPLA2 via a Gαq, PLC, Ca2+-CaM, and calmodulin-dependent protein kinase-dependent pathway that is independent the ERK pathway.


Journal of Biological Chemistry | 2002

Parallel Activation of Phosphatidylinositol 4-Kinase and Phospholipase C by the Extracellular Calcium-sensing Receptor

Chunfa Huang; Mary E. Handlogten; R. Tyler Miller

The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca2+ metabolism, Na+, Cl−, K+, and H20 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Gαq and Gαi, not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaRR796W was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with U73122 to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [3H]inositol trisphosphate (IP3), CaR stimulated the accumulation of [3H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [3H]PIP and inhibited [3H]IP3 production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase β can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca2+-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [3H]IP3 or the rise in intracellular Ca2+ (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem.276, 13941–13948). RGS4, an accelerator of GTPase activity of members of the Gαi and Gαq families, attenuated the CaR-stimulated PLC activation and IP3 accumulation, which is mediated by Gαq, but did not inhibit CaR-stimulated [3H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C3 toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [3H]IP3production but did not lead to CaR-stimulated [3H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Gαq- and Gαi-independent pathways.


Journal of Cellular and Molecular Medicine | 2007

The calcium-sensing receptor and its interacting proteins

Chunfa Huang; R. Tyler Miller

•  Introduction •  Signalling by the Ca receptor •  Distinct effects of angiotensin II and Ca receptors •  Receptor activity modifying proteins (RAMPS) •  Filamin •  Potassium channels •  Other CaR‐interacting proteins •  Conclusions


American Journal of Physiology-cell Physiology | 2011

Biophysical properties of normal and diseased renal glomeruli

Hans M. Wyss; Joel Henderson; Fitzroy J. Byfield; Leslie A. Bruggeman; Yaxian Ding; Chunfa Huang; Jung Hee Suh; Thomas Franke; Elisa Mele; Martin R. Pollak; Jeffrey H. Miner; Paul A. Janmey; David A. Weitz; R. Tyler Miller

The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Youngs modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Youngs moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Youngs modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.


Journal of Biological Chemistry | 2011

Calcium-sensing Receptor Decreases Cell Surface Expression of the Inwardly Rectifying K+ Channel Kir4.1

Seung Kuy Cha; Chunfa Huang; Yaxian Ding; Xiaoping Qi; Chou Long Huang; R. Tyler Miller

The Ca2+-sensing receptor (CaR) regulates salt and water transport in the kidney as demonstrated by the association of gain of function CaR mutations with a Bartter syndrome-like, salt-wasting phenotype, but the precise mechanism for this effect is not fully established. We found previously that the CaR interacts with and inactivates an inwardly rectifying K+ channel, Kir4.1, which is expressed in the distal nephron that contributes to the basolateral K+ conductance, and in which loss of function mutations are associated with a complex phenotype that includes renal salt wasting. We now find that CaR inactivates Kir4.1 by reducing its cell surface expression. Mutant CaRs reduced Kir4.1 cell surface expression and current density in HEK-293 cells in proportion to their signaling activity. Mutant, activated Gαq reduced cell surface expression and current density of Kir4.1, and these effects were blocked by RGS4, a protein that blocks signaling via Gαi and Gαq. Other α subunits had insignificant effects. Knockdown of caveolin-1 blocked the effect of Gαq on Kir4.1, whereas knockdown of the clathrin heavy chain had no effect. CaR had no comparable effect on the renal outer medullary K+ channel, an apical membrane distal nephron K+ channel that is internalized by clathrin-coated vesicles. Co-immunoprecipitation studies showed that the CaR and Kir4.1 physically associate with caveolin-1 in HEK cells and in kidney extracts. Thus, the CaR decreases cell surface expression of Kir4.1 channels via a mechanism that involves Gαq and caveolin. These results provide a novel molecular basis for the inhibition of renal NaCl transport by the CaR.


FEBS Letters | 2006

Silencing of filamin A gene expression inhibits Ca2+‐sensing receptor signaling

Chunfa Huang; Zhenzhen Wu; Kristine M. Hujer; R. Tyler Miller

Filamin plays an important role in actin cytoskeleton organization, membrane stabilization, and anchoring of transmembrane proteins. Using short interfering RNA (siRNA) to selectively target the filamin A gene and silence its expression, we studied the role of filamin A in G protein coupled receptor (GPCR) signaling. Silencing of filamin A protein expression was determined by immunoblotting and immunofluorescence. Functional consequences of filamin A gene silencing were measured by studying its role in MAPK signaling pathways activated by the Ca2+‐sensing receptor. This work defines filamin A involvement in GPCR signaling pathways and describes an additional method for studying its function.


Cellular Signalling | 2009

Activation of choline kinase by extracellular Ca2+ is Ca2+-sensing receptor, Gα12 and Rho-dependent in breast cancer cells

Chunfa Huang; Lindsey M. Hydo; Shiguo Liu; R. Tyler Miller

Breast cancer cell metastases to bone result in osteolysis and release of large quantities of Ca2+ into the bone microenviroment. Extracellular Ca2+ (Ca(o)2+) acting through the Ca(2+)-sensing receptor (CaR), a member of G protein-coupled receptor superfamily, plays an important role in the regulation of multiple signaling pathways. Here, we find that expression of the CaR and Galpha(12) is significantly up-regulated in breast cancer cells (MDA-MB-231 and MCF-7) compared with nonmalignant breast cells (Hs 578Bst and MCF-10A). Ca(o)2+ induces a significant increase in extracellular [(3)H]phosphocholine (P-cho) production in breast cancer cells. Using an anti-CaR antibody to block Ca(o)2+ binding to the CaR and small interfering RNA (siRNA) to silence CaR gene expression, our data demonstrate that [(3)H]P-cho production in response to Ca(o)(2+)-stimulation is CaR-dependent. By analyzing cellular lipid profiles and using siRNA to silence choline kinase (ChoK) expression, we determine that the production of [3H]P-cho is primarily related to CaR-induced ChoK activation, and not degradation of choline phospholipids. Finally, by pretreatment of the cells with either pertussis toxin or C3 exoenzyme, co-immunoprecipiation of Galpha(i), Galpha(q) or Galpha12 with the CaR, and RhoA translocation, we found that the enhancement of ChoK activation and P-cho production in breast cancer cells occurs via a CaR-Galpha12-Rho signaling pathway.


Current Opinion in Nephrology and Hypertension | 2007

Regulation of renal ion transport by the calcium-sensing receptor: an update.

Chunfa Huang; R. Tyler Miller

Purpose of reviewExtracellular calcium has profound effects on renal tubular transport, presumably via the calcium-sensing receptor, which is expressed in all nephron segments, but its effects in specific segments and the mechanism of regulation of transport are not fully understood. Recent findingsRecognition that activating calcium-sensing receptor mutations result in a Bartter-like syndrome demonstrate that the transport effects of extracellular calcium are mediated by the calcium-sensing receptor. Its presence in the gills and solute and water-transporting organs of fish coupled with appropriate calcium-sensing receptor kinetics indicate that the calcium-sensing receptor was originally involved in the regulation of sodium chloride, calcium and magnesium transport. Based on its physiological effects on tubular transport and biochemical and genetic data, the calcium-sensing receptor appears to act by mechanisms that distinguish it from other G protein-coupled receptors. SummaryThe calcium-sensing receptor mediates the effects of extracellular calcium on the kidney, is an essential control point in the regulation of calcium balance and possibly the physiological regulation of sodium chloride balance. The thick ascending limb of Henle and distal convoluted tubule appear to be the nephron segments most responsible for the effects of the calcium-sensing receptor, although its mechanisms of action are not fully established.


Experimental Cell Research | 2012

Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes.

Chunfa Huang; Leslie A. Bruggeman; Lindsey M. Hydo; R. Tyler Miller

The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD(1), and PLD(2) to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD(1) but not PLD(2). The inhibition of shear stress-induced c-Src phosphorylation by PP(2) (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

Collaboration


Dive into the Chunfa Huang's collaboration.

Top Co-Authors

Avatar

R. Tyler Miller

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kristine M. Hujer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Zhenzhen Wu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jenny Ziembicki

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajnish Tandon

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Schelling

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

John R. Sedor

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Leslie A. Bruggeman

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge