Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chung Hsin Wu is active.

Publication


Featured researches published by Chung Hsin Wu.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2006

GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus , determined with single pulses and pulse–echo pairs

Chung Hsin Wu; Philip H.-S. Jen

When insectivorous bats such as Eptesicus fuscus emit ultrasonic signals and analyze the returning echoes to hunt insects, duration selectivity of auditory neurons plays an important role in echo recognition. The success of prey capture indicates that they can effectively encode progressively shortened echo duration throughout the hunting process. The present study examines the echo duration selectivity of neurons in the central nucleus of the bat inferior colliculus (IC) under stimulation conditions of single pulses and pulse–echo (P–E) pairs. This study also examines the role of gamma-aminobutyric acid (GABA)ergic inhibition in shaping echo duration selectivity of IC neurons. The data obtained show that the echo duration selectivity of IC neurons is sharper when determined with P–E pairs than with single pulses. Echo duration selectivity also sharpens with shortening of pulse duration and P–E gap. Bicuculline application decreases and GABA application increases echo duration selectivity of IC neurons. The degree of change in echo duration selectivity progressively increases with shortening of pulse duration and P–E gap during bicuculline application while the opposite is observed during the GABA application. These data indicate that the GABAergic inhibition contributes to sharpening of echo duration selectivity of IC neurons and facilitates echo recognition by bats throughout different phases of hunting.


Hearing Research | 2006

The role of GABAergic inhibition in shaping duration selectivity of bat inferior collicular neurons determined with temporally patterned sound trains

Chung Hsin Wu; Philip H.-S. Jen

A previous study has shown that duration selectivity of neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus becomes sharper with increasing pulse repetition rate (PRR). The present study examines the role of GABAergic inhibition in improving duration selectivity of bat IC neurons with PRR by means of iontophoretic application of GABA as well as its antagonist, bicuculline. Duration selectivity of IC neurons is studied by plotting the duration tuning curves with the number of impulses per pulse against the pulse duration. Duration tuning curves of IC neurons are described as band-, short-, long- and all-pass in terms of filtering properties to sound duration. Bicuculline application produces more pronounced broadening of duration tuning curves at high than at low PRR. Conversely, GABA application produces more pronounced narrowing of duration tuning curves at low than at high PRR. In either case, sharpening of duration selectivity of IC neurons with increasing PRR is abolished during drug application. The duration tuning curves of IC neurons progressively broadens with recording depth. Broadening of duration tuning curves during bicuculline application is more pronounced for neurons at upper than at deep IC. This progressive decrease in duration selectivity with recording depth is discussed in relation to spatial distribution gradient of GABAA receptors in the IC. Possible biological significance of these findings relevant to bat echolocation is discussed.


Hearing Research | 2005

The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences

Philip H.-S. Jen; Chung Hsin Wu

Natural sounds, such as vocal communication sounds of many animal species typically occur as sequential sound pulses. Therefore, the response size of auditory neurons to a sound pulse would be inevitably affected when the sound pulse is preceded and succeeded by another sound pulse (i.e., forward and backward masking). The present study presents data to show that increasing strength of GABAergic inhibition relative to excitation contributes to decreasing response size and sharpening of duration selectivity of bat inferior collicular (IC) neurons to sound pulses in rapid sequences. The response size in number of impulses and duration selectivity of IC neurons were studied with a pulse train containing 9 sound pulses. A family of duration tuning curves was plotted for IC neurons using the number of impulses discharged to each presented sound pulse against pulse duration. Our data show that the response size of IC neurons progressively decreased and duration selectivity increased when determined with sequentially presented sound pulses. This variation in the response size and duration selectivity of IC neurons with sequentially presented sound pulses was abolished or reduced during bicuculline and GABA application. Bicuculline application increased the response size and broadened the duration tuning curve of IC neurons while GABA application produced opposite results. Possible mechanisms underlying increasing strength of GABAergic inhibition with sequentially presented sound pulses are presented. Biological significance of these findings in relation to acoustic signal processing is also discussed.


Brain Research | 2006

Duration selectivity organization in the inferior colliculus of the big brown bat, Eptesicus fuscus

Philip H.-S. Jen; Chung Hsin Wu

Duration selectivity of auditory neurons plays an important role in sound recognition. Previous studies show that GABA-mediated duration selectivity of neurons in the central nucleus of the inferior colliculus (IC) of many animal species behave as band-, short-, long- and all-pass filters to sound duration. The present study examines the organization of duration selectivity of IC neurons of the big brown bat, Eptesicus fuscus, in relation to graded spatial distribution of GABA(A) receptors, which are mostly distributed in the dorsomedial region of the IC but are sparsely distributed in the ventrolateral region. Duration selectivity of IC neuron is studied before and during iontophoretic application of GABA and its antagonist, bicuculline. Bicuculline application decreases and GABA application increases duration selectivity of IC neurons. Bicuculline application produces more pronounced broadening of the duration tuning curves of neurons at upper IC than at deeper IC but the opposite is observed during GABA application. The best duration of IC neurons progressively lengthens and duration selectivity decreases with recording depth both before and during drug application. As such, low best frequency neurons at upper IC have shorter best duration and sharper duration selectivity than high best frequency neurons in the deeper IC have. These data suggest that duration selectivity of IC neurons systematically varies with GABA(A) receptor distribution gradient within the IC.


Brain Research | 2002

GABAergic inhibition contributes to pulse repetition rate-dependent frequency selectivity in the inferior colliculus of the big brown bat, Eptesicus fuscus

Philip H.-S. Jen; Chung Hsin Wu; Rui Hong Luan; Xiaoming Zhou

This study examined the effect of bicuculline application on sharpness of frequency tuning curves (FTCs) of bat inferior collicular neurons plotted under three different pulse repetition rates (PRRs) of 10, 30 and 90 pulses per second. The sharpness of FTCs of collicular neurons, which was expressed in Q(n) (Q(10), Q(20), Q(30)) and bandwidths (90, 75 and 50% of the maximal response at the best frequency), improved with increasing PRR. However, this PRR-dependent frequency selectivity of collicular neurons was abolished during bicuculline application. This observation suggests that GABAergic inhibition contributes more effectively to sharpening of FTCs at higher than at lower PRRs.


PLOS ONE | 2012

Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis

Li-Ching Lee; Chiung-Mei Chen; Hao-Chun Wang; Hsiao-Han Hsieh; I-Sheng Chiu; Ming Tsan Su; Hsiu Mei Hsieh-Li; Chung Hsin Wu; Guan Chiun Lee; Guey-Jen Lee-Chen; Jung-Yaw Lin

Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study using a cellular model of SCA17 has revealed reduced expression of heat shock 70 kDa protein 5 (HSPA5) and heat shock 70 kDa protein 8 (HSPA8), suggesting that impaired protein folding may contribute to the cell dysfunction of SCA17 (Lee et al., 2009). In lymphoblastoid cells, HSPA5 and HSPA8 expression levels in cells with mutant TBP were also significantly lower than that of the control cells (Chen et al., 2010). As nuclear transcription factor Y (NFY) has been reported to regulate HSPA5 transcription, we focused on if NFY activity and HSPA5 expression in SCA17 cells are altered. Here, we show that TBP interacts with NFY subunit A (NFYA) in HEK-293 cells and NFYA incorporated into mutant TBP aggregates. In both HEK-293 and SH-SY5Y cells expressing TBP/Q(61~79), the level of soluble NFYA was significantly reduced. In vitro binding assay revealed that the interaction between TBP and NFYA is direct. HSPA5 luciferase reporter assay and endogenous HSPA5 expression analysis in NFYA cDNA and siRNA transfection cells further clarified the important role of NFYA in regulating HSPA5 transcription. In SCA17 cells, HSPA5 promoter activity was activated as a compensatory response before aggregate formation. NFYA dysfunction was indicated in SCA17 cells as HSPA5 promoter activity reduced along with TBP aggregate formation. Because essential roles of HSPA5 in protection from neuronal apoptosis have been shown in a mouse model, NFYA could be a target of mutant TBP in SCA17.


Neuroscience | 2008

ECHO FREQUENCY SELECTIVITY OF DURATION-TUNED INFERIOR COLLICULAR NEURONS OF THE BIG BROWN BAT, EPTESICUS FUSCUS, DETERMINED WITH PULSE-ECHO PAIRS

Chung Hsin Wu; Philip H.-S. Jen

During hunting, insectivorous bats such as Eptesicus fuscus progressively vary the repetition rate, duration, frequency and amplitude of emitted pulses such that analysis of an echo parameter by bats would be inevitably affected by other co-varying echo parameters. The present study is to determine the variation of echo frequency selectivity of duration-tuned inferior collicular neurons during different phases of hunting using pulse-echo (P-E) pairs as stimuli. All collicular neurons discharge maximally to a tone at a particular frequency which is defined as the best frequency (BF). Most collicular neurons also discharge maximally to a BF pulse at a particular duration which is defined as the best duration (BD). A family of echo iso-level frequency tuning curves (iso-level FTC) of these duration-tuned collicular neurons is measured with the number of impulses in response to the echo pulse at selected frequencies when the P-E pairs are presented at varied P-E duration and gap. Our data show that these duration-tuned collicular neurons have narrower echo iso-level FTC when measured with BD than with non-BD echo pulses. Also, IC neurons with low BF and short BD have narrower echo iso-level FTC than IC neurons with high BF and long BD have. The bandwidth of echo iso-level FTC significantly decreases with shortening of P-E duration and P-E gap. These data suggest that duration-tuned collicular neurons not only can facilitate bats echo recognition but also can enhance echo frequency selectivity for prey feature analysis throughout a target approaching sequence during hunting. These data also support previous behavior studies showing that bats prepare their auditory system to analyze expected returning echoes within a time window to extract target features after pulse emission.


Clinica Chimica Acta | 2009

Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis

Li Ching Lee; Chiung Mei Chen; Fen Lin Chen; Pei Ying Lin; Ya Chin Hsiao; Pin Rong Wang; Ming Tsan Su; Hsiu Mei Hsieh-Li; Ji-Chuu Hwang; Chung Hsin Wu; Guan Chiun Lee; Sher Singh; Yenshou Lin; Sen Yung Hsieh; Guey-Jen Lee-Chen; Jung-Yaw Lin

BACKGROUND Expansion of the CAG repeat of the TATA-box binding protein (TBP) gene has been identified as the causative mutations in spinocerebellar ataxia 17 (SCA17). TBP is ubiquitously expressed in both central nervous system and peripheral tissues. The underlying molecular changes of SCA17 are rarely explored. METHODS To study the molecular mechanisms underlying SCA17, we generated stably induced isogenic 293 cells expressing normal TBP-Q(36) and expanded TBP-Q(61) and analyzed the expressed proteins using two-dimensional difference in gel electrophoresis (2D-DIGE), followed by mass spectrometry and immunoblotting. RESULTS Upon induction with doxycycline, the expanded TBP-Q(61) formed aggregates with significant increase in the cell population at subG1 phase and cleaved caspase-3. Proteomics study identified a total of 16 proteins with expression changes greater than 1.5 fold. Among the 16 proteins, PARK7, GLRX3, HNRNPA1, GINS1, ENO1, HNRPK and NPM1 are increased, and SERPINA5, HSPA5, VCL, KHSRP, HSPA8, HNRPH1, IMMT, VCP and HNRNPL are decreased in cells expressing TBP-Q(61) compared with those expressing TBP-Q(36). The altered expression of HSPA5, HSPA8 and PARK7 were further validated by 2D and Western immunoblot analyses. CONCLUSIONS The results illustrate the utility of proteomics to identify alterations of proteins which underlie pathogenesis of SCA17, and may serve as potential therapeutic targets.


Applied Optics | 2015

Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy

Xin Ji Lai; Han Yen Tu; Chung Hsin Wu; Yu Chih Lin; Chau Jern Cheng

This study describes the overlapping of spatial frequency bands for synthetic aperture in digital holography using spectrum normalization to effectively enhance the spatial resolutions of image reconstruction. Synthesized spectrum swelling induced by excessive frequency overlaps can be normalized through the inverse apodization of an adjustable window function, which is similar to the effects of suppressing low-frequency expansion and strengthening high-frequency components of the reconstructed images. The results indicated that using the normalized spectrum synthesis that requires only a few frequency bands effectively enhances the spatial resolution and phase sensitivity of reconstructed images in digital holographic microscopy.


Neuroreport | 2008

Echo duration selectivity of the bat varies with pulse-echo amplitude difference

Philip H.-S. Jen; Chung Hsin Wu

During hunting, insectivorous bats progressively decrease the pulse duration, pulse amplitude and pulse–echo gap as they search, approach and finally intercept the prey. Our earlier study shows that echo duration selectivity of most neurons in the central nucleus of the inferior colliculus of Eptesicus fuscus improves with decreasing pulse duration and pulse–echo gap. In this study, we show that most collicular neurons discharged maximally to a best echo duration using three biologically relevant pulse–echo pairs as stimuli. The echo duration selectivity of these collicular neurons improves with decreasing pulse duration, pulse–echo gap and amplitude difference. This improvement of echo duration selectivity with variation in pulse–echo parameters throughout a target approaching sequence would certainly facilitate prey capture.

Collaboration


Dive into the Chung Hsin Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ching Lung Lin

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Chih Hsiang Hsu

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Sheue Er Wang

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Chiang Ting Chien

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Guey-Jen Lee-Chen

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Hsiu Mei Hsieh-Li

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Chun Jen Hsiao

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Jung Yaw Lin

National Taiwan Normal University

View shared research outputs
Top Co-Authors

Avatar

Jung-Yaw Lin

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge