Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chung-I Chang is active.

Publication


Featured researches published by Chung-I Chang.


Science | 2006

Structure of Tracheal Cytotoxin in Complex with a Heterodimeric Pattern-Recognition Receptor

Chung-I Chang; Yogarany Chelliah; Dominika Borek; Dominique Mengin-Lecreulx; Johann Deisenhofer

Tracheal cytotoxin (TCT), a naturally occurring fragment of Gram-negative peptidoglycan, is a potent elicitor of innate immune responses in Drosophila. It induces the heterodimerization of its recognition receptors, the peptidoglycan recognition proteins (PGRPs) LCa and LCx, which activates the immune deficiency pathway. The crystal structure at 2.1 angstrom resolution of TCT in complex with the ectodomains of PGRP-LCa and PGRP-LCx shows that TCT is bound to and presented by the LCx ectodomain for recognition by the LCa ectodomain; the latter lacks a canonical peptidoglycan-docking groove conserved in other PGRPs. The interface, revealed in atomic detail, between TCT and the receptor complex highlights the importance of the anhydro-containing disaccharide in bridging the two ectodomains together and the critical role of diaminopimelic acid as the specificity determinant for PGRP interaction.


PLOS Biology | 2004

A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l,d-carboxypeptidase activity.

Chung-I Chang; Sébastien Pili-Floury; Mireille Hervé; Claudine Parquet; Yogarany Chelliah; Bruno Lemaitre; Dominique Mengin-Lecreulx; Johann Deisenhofer

The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-Å resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structural basis for conserved complement factor-like function in the antimalarial protein TEP1

Richard H. G. Baxter; Chung-I Chang; Yogarany Chelliah; Stéphanie Blandin; Elena A. Levashina; Johann Deisenhofer

Thioester-containing proteins (TEPs) are a major component of the innate immune response of insects to invasion by bacteria and protozoa. TEPs form a distinct clade of a superfamily that includes the pan-protease inhibitors α2-macroglobulins and vertebrate complement factors. The essential feature of these proteins is a sequestered thioester bond that, after cleavage in a protease-sensitive region of the protein, is activated and covalently binds to its target. Recently, TEP1 from the malarial vector Anopheles gambiae was shown to mediate recognition and killing of ookinetes from the malarial parasite Plasmodium berghei, a model for the human malarial parasite Plasmodium falciparum. Here, we present the crystal structure of the TEP1 isoform TEP1r. Although the overall protein fold of TEP1r resembles that of complement factor C3, the TEP1r domains are repositioned to stabilize the inactive conformation of the molecule (containing an intact thioester) in the absence of the anaphylotoxin domain, a central component of complement factors. The structure of TEP1r provides a molecular basis for the differences between TEP1 alleles TEP1r and TEP1s, which correlate with resistance of A. gambiae to infection by P. berghei.


PLOS ONE | 2013

Three-Dimensional Structure of Human NLRP10/PYNOD Pyrin Domain Reveals a Homotypic Interaction Site Distinct from Its Mouse Homologue

Ming-Yuan Su; Chiao-I Kuo; Chi-Fon Chang; Chung-I Chang

NLRPs (Nucleotide-binding domain, leucine-rich repeat and pyrin domain containing proteins) are a family of pattern-recognition receptors (PRRs) that sense intracellular microbial components and endogenous stress signals. NLRP10 (also known as PYNOD) is a unique NLRP member characterized by a lack of the putative ligand-binding leucine-rich repeat domain. Recently, human NLRP10 has been shown to inhibit the self-association of ASC into aggregates and ASC-mediated procaspase-1 processing. However, such activities are not found in mouse NLRP10. Here we report the solution structure and dynamics of human NLRP10 pyrin domain (PYD), whose helix H3 and loop H2–H3 adopt a conformation distinct from those of mouse NLRP10. Docking studies show that human and mouse NLRP10 PYDs may interact differently with ASC PYD. These results provide a possible structural explanation for the contrasting effect of NLRP10 on ASC aggregation in human cells versus mouse models. Finally, we also provide evidence that in human NLRP10 the PYD domain may not interact with the NOD domain to regulate its intrinsic nucleotide hydrolysis activity.


Structure | 2016

Structural Insights into the Allosteric Operation of the Lon AAA+ Protease

Chien-Chu Lin; Shih-Chieh Su; Ming-Yuan Su; Pi-Hui Liang; Chia-Cheng Feng; Shih-Hsiung Wu; Chung-I Chang

The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine.


Autophagy | 2015

Structure of yeast Ape1 and its role in autophagic vesicle formation

Ming-Yuan Su; Wen-Hsin Peng; Meng-Ru Ho; Shih-Chieh Su; Yuan-Chih Chang; Guang-Chao Chen; Chung-I Chang

In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.


PLOS ONE | 2012

A Lon-Like Protease with No ATP-Powered Unfolding Activity

Jiahn-Haur Liao; Chiao-I Kuo; Ya-Yi Huang; Yu-Ching Lin; Yen-Chen Lin; Chen-Yui Yang; Wan Ling Wu; Wei-Hau Chang; Yen-Chywan Liaw; Li-Hua Lin; Chung-I Chang; Shih-Hsiung Wu

Lon proteases are a family of ATP-dependent proteases involved in protein quality control, with a unique proteolytic domain and an AAA+ (ATPases associated with various cellular activities) module accommodated within a single polypeptide chain. They were classified into two types as either the ubiquitous soluble LonA or membrane-inserted archaeal LonB. In addition to the energy-dependent forms, a number of medically and ecologically important groups of bacteria encode a third type of Lon-like proteins in which the conserved proteolytic domain is fused to a large N-terminal fragment lacking canonical AAA+ motifs. Here we showed that these Lon-like proteases formed a clade distinct from LonA and LonB. Characterization of one such Lon-like protease from Meiothermus taiwanensis indicated that it formed a hexameric assembly with a hollow chamber similar to LonA/B. The enzyme was devoid of ATPase activity but retained an ability to bind symmetrically six nucleotides per hexamer; accordingly, structure-based alignment suggested possible existence of a non-functional AAA-like domain. The enzyme degraded unstructured or unfolded protein and peptide substrates, but not well-folded proteins, in ATP-independent manner. These results highlight a new type of Lon proteases that may be involved in breakdown of excessive damage or unfolded proteins during stress conditions without consumption of energy.


Acta Crystallographica Section D-biological Crystallography | 2013

Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors

Jiahn-Haur Liao; Kentaro Ihara; Chiao-I Kuo; Kai-Fa Huang; Soichi Wakatsuki; Shih-Hsiung Wu; Chung-I Chang

The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates. Importantly, these results provide mechanistic insights into the recognition of inhibitors and polypeptide substrates within the conserved proteolytic chamber, which may aid the development of specific Lon-protease inhibitors.


Cellular and Molecular Life Sciences | 2007

The peptidoglycan recognition proteins LCa and LCx.

Chung-I Chang; Johann Deisenhofer

Abstract.Infection of bacteria triggers innate immune defense reactions in Drosophila. So far, the only bacterial component known to be recognized by the insect innate immune system is peptidoglycan, one of the most abundant constituents of the bacterial cell wall. Insects use peptidoglycan recognition proteins to detect peptidoglycan and to activate innate immune responses. Such specialized peptidoglycan receptors appear to have evolved from phage enzymes that hydrolyze bacterial cell walls. They are able to bind specific peptidoglycan molecules with distinct chemical moieties and activate innate immune pathways by interacting with other signaling proteins. Recent X-ray crystallographic studies of the peptidoglycan recognition proteins LCa, and LCx bound to peptidoglycan have provided structural insights into recognition of peptidoglycan and activation of innate immunity in insects.


Acta Crystallographica Section D-biological Crystallography | 2013

The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones

Jhen-Kai Li; Jiahn-Haur Liao; Hongchun Li; Chiao-I Kuo; Kai-Fa Huang; Lee-Wei Yang; Shih-Hsiung Wu; Chung-I Chang

The Lon protease is ubiquitous in nature. Its proteolytic activity is associated with diverse cellular functions ranging from maintaining proteostasis under normal and stress conditions to regulating cell metabolism. Although Lon was originally identified as an ATP-dependent protease with fused AAA+ (ATPases associated with diverse cellular activities) and protease domains, analyses have recently identified LonC as a class of Lon-like proteases with no intrinsic ATPase activity. In contrast to the canonical ATP-dependent Lon present in eukaryotic organelles and prokaryotes, LonC contains an AAA-like domain that lacks the conserved ATPase motifs. Moreover, the LonC AAA-like domain is inserted with a large domain predicted to be largely α-helical; intriguingly, this unique Lon-insertion domain (LID) was disordered in the recently determined full-length crystal structure of Meiothermus taiwanensis LonC (MtaLonC). Here, the crystal structure of the N-terminal AAA-like α/β subdomain of MtaLonC containing an intact LID, which forms a large α-helical hairpin protruding from the AAA-like domain, is reported. The structure of the LID is remarkably similar to the tentacle-like prong of the periplasmic chaperone Skp. It is shown that the LID of LonC is involved both in Skp-like chaperone activity and in recognition of unfolded protein substrates. The structure allows the construction of a complete model of LonC with six helical hairpin extensions defining a basket-like structure atop the AAA ring and encircling the entry portal to the barrel-like degradation chamber of Lon.

Collaboration


Dive into the Chung-I Chang's collaboration.

Top Co-Authors

Avatar

Ming-Yuan Su

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chien-Chu Lin

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Deisenhofer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yogarany Chelliah

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shih-Chieh Su

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Goldsmith

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge