Chung Ke Chang
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chung Ke Chang.
Journal of Molecular Biology | 2007
Chun Yuan Chen; Chung Ke Chang; Yi Wei Chang; Shih Che Sue; Hsin I. Bai; Lilianty Riang; Chwan-Deng Hsiao; Tai Huang Huang
Abstract Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248–365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248–280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248–280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.
Journal of Biomedical Science | 2006
Chung Ke Chang; Shih Che Sue; Tsan Hung Yu; Chiu Min Hsieh; Cheng Kun Tsai; Yen Chieh Chiang; Shin Jye Lee; Hsin Hao Hsiao; Wen-Jin Wu; Wei Lun Chang; Chun-Hung Lin; Tai Huang Huang
The SARS-CoV nucleocapsid (N) protein is a major antigen in severe acute respiratory syndrome. It binds to the viral RNA genome and forms the ribonucleoprotein core. The SARS-CoV N protein has also been suggested to be involved in other important functions in the viral life cycle. Here we show that the N protein consists of two non-interacting structural domains, the N-terminal RNA-binding domain (RBD) (residues 45–181) and the C-terminal dimerization domain (residues 248–365) (DD), surrounded by flexible linkers. The C-terminal domain exists exclusively as a dimer in solution. The flexible linkers are intrinsically disordered and represent potential interaction sites with other protein and protein-RNA partners. Bioinformatics reveal that other coronavirus N proteins could share the same modular organization. This study provides information on the domain structure partition of SARS-CoV N protein and insights into the differing roles of structured and disordered regions in coronavirus nucleocapsid proteins.
Journal of Virology | 2009
Chung Ke Chang; Yen lan Hsu; Yuan hsiang Chang; Fa An Chao; Ming Chya Wu; Yu Shan Huang; Chin-Kun Hu; Tai Huang Huang
ABSTRACT The nucleocapsid protein (N) of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genomic RNA and is crucial for viability. However, the RNA-binding mechanism is poorly understood. We have shown previously that the N protein contains two structural domains—the N-terminal domain (NTD; residues 45 to 181) and the C-terminal dimerization domain (CTD; residues 248 to 365)—flanked by long stretches of disordered regions accounting for almost half of the entire sequence. Small-angle X-ray scattering data show that the protein is in an extended conformation and that the two structural domains of the SARS-CoV N protein are far apart. Both the NTD and the CTD have been shown to bind RNA. Here we show that all disordered regions are also capable of binding to RNA. Constructs containing multiple RNA-binding regions showed Hill coefficients greater than 1, suggesting that the N protein binds to RNA cooperatively. The effect can be explained by the “coupled-allostery” model, devised to explain the allosteric effect in a multidomain regulatory system. Although the N proteins of different coronaviruses share very low sequence homology, the physicochemical features described above may be conserved across different groups of Coronaviridae. The current results underscore the important roles of multisite nucleic acid binding and intrinsic disorder in N protein function and RNP packaging.
Biochemical and Biophysical Research Communications | 2012
Chung Ke Chang; Tzong Huah Wu; Chu Ya Wu; Ming hui Chiang; Elsie Khai Woon Toh; Yin Chih Hsu; Ku Feng Lin; Yu heng Liao; Tai Huang Huang; Joseph Jen-Tse Huang
TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.
FEBS Letters | 2005
Chung Ke Chang; Shih Che Sue; Tsan Hung Yu; Chiu Min Hsieh; Cheng Kun Tsai; Yen Chieh Chiang; Shin Jye Lee; Hsin Hao Hsiao; Wen-Jin Wu; Chi-Fon Chang; Tai Huang Huang
We have employed NMR to investigate the structure of SARS coronavirus nucleocapsid protein dimer. We found that the secondary structure of the dimerization domain consists of five α helices and a β‐hairpin. The dimer interface consists of a continuous four‐stranded β‐sheet superposed by two long α helices, reminiscent of that found in the nucleocapsid protein of porcine respiratory and reproductive syndrome virus. Extensive hydrogen bond formation between the two hairpins and hydrophobic interactions between the β‐sheet and the α helices render the interface highly stable. Sequence alignment suggests that other coronavirus may share the same structural topology.
Antiviral Research | 2014
Chung Ke Chang; Ming-Hon Hou; Chi-Fon Chang; Chwan-Deng Hsiao; Tai Huang Huang
Abstract The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein–protein and protein–nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on “From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.”
FEBS Letters | 2013
Chung Ke Chang; Ming hui Chiang; Elsie Khai Woon Toh; Chi-Fon Chang; Tai Huang Huang
RRM2 and RRM2 bind by molecular sieving (View Interaction: 1, 2)
PLOS ONE | 2013
Chung Ke Chang; Chia Min Michael Chen; Ming hui Chiang; Yen lan Hsu; Tai Huang Huang
The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.
Nucleic Acids Research | 2014
Yi Chuan Li; Chung Ke Chang; Chi-Fon Chang; Ya Hsin Cheng; Pei Ju Fang; Tsunai Yu; Sheng Chia Chen; Yi Ching Li; Chwan-Deng Hsiao; Tai Huang Huang
The RstA/RstB system is a bacterial two-component regulatory system consisting of the membrane sensor, RstB and its cognate response regulator (RR) RstA. The RstA of Klebsiella pneumoniae (kpRstA) consists of an N-terminal receiver domain (RD, residues 1–119) and a C-terminal DNA-binding domain (DBD, residues 130–236). Phosphorylation of kpRstA induces dimerization, which allows two kpRstA DBDs to bind to a tandem repeat, called the RstA box, and regulate the expression of downstream genes. Here we report the solution and crystal structures of the free kpRstA RD, DBD and DBD/RstA box DNA complex. The structure of the kpRstA DBD/RstA box complex suggests that the two protomers interact with the RstA box in an asymmetric fashion. Equilibrium binding studies further reveal that the two protomers within the kpRstA dimer bind to the RstA box in a sequential manner. Taken together, our results suggest a binding model where dimerization of the kpRstA RDs provides the platform to allow the first kpRstA DBD protomer to anchor protein–DNA interaction, whereas the second protomer plays a key role in ensuring correct recognition of the RstA box.
Sensors and Actuators B-chemical | 2014
You Ren Hsu; Yen Wen Kang; Jung Ying Fang; Geng Yen Lee; Jen Inn Chyi; Chung Ke Chang; Chih Cheng Huang; Chen Pin Hsu; Tai Huang Huang; Yu-Fen Huang; Yuh-Chang Sun; Chia Hsien Hsu; Chih Chen Chen; Sheng-Shian Li; J. Andrew Yeh; Da Jeng Yao; F. Ren; Yu-Lin Wang
Abstract AlGaN/GaN high electron mobility transistors (HEMTs) were used to sense the binding between double stranded DNA (dsDNA) and the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (N protein). The sensing signals were the drain current change of the HEMTs induced by the protein–dsDNA binding. Binding-site models using surface coverage ratios were utilized to analyze the signals from the HEMT-based sensors to extract the dissociation constants and predict the number of binding sites. Two dissociation constants, K D1 =0.0955nM, K D2 =51.23nM, were obtained by fitting the experimental results into the two-binding-site model. The result shows that this technique is more competitive than isotope-labeling electrophoretic mobility shift assay (EMSA). We demonstrated that AlGaN/GaN HEMTs were highly potential in constructing a semiconductor-based-sensor binding assay to extract the dissociation constants of nucleotide–protein interaction.