Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chung Yeng Looi is active.

Publication


Featured researches published by Chung Yeng Looi.


Molecules | 2013

Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L.) G. Don.

Soon Huat Tiong; Chung Yeng Looi; Hazrina Hazni; Aditya Arya; Mohammadjavad Paydar; Won Fen Wong; Shiau-Chuen Cheah; Mohd Rais Mustafa; Khalijah Awang

Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids—vindoline I, vindolidine II, vindolicine III and vindolinine IV—were isolated and identified from the dichloromethane extract (DE) of this plant’s leaves. DE and compounds I–III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II–IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H2O2-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL.


Seminars in Cancer Biology | 2016

Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds

Muthu K. Shanmugam; Jong Hyun Lee; Edna Zhi Pei Chai; Madhu Mathi Kanchi; Shreya Kar; Frank Arfuso; Arunasalam Dharmarajan; Alan Prem Kumar; Perumal Samy Ramar; Chung Yeng Looi; Mohammad Rais Mustafa; Vinay Tergaonkar; Anupam Bishayee; Kwang Seok Ahn; Gautam Sethi

The association between chronic inflammation and cancer development has been well documented. One of the major obstacles in cancer treatment is the persistent autocrine and paracrine activation of pro-inflammatory transcription factors such as nuclear factor-κB, signal transducer and activator of transcription 3, activator protein 1, fork head box protein M1, and hypoxia-inducible factor 1α in a wide variety of tumor cell lines and patient specimens. This, in turn, leads to an accelerated production of cellular adhesion molecules, inflammatory cytokines, chemokines, anti-apoptotic molecules, and inducible nitric oxide synthase. Numerous medicinal plant-derived compounds have made a tremendous impact in drug discovery research endeavors, and have been reported to modulate the activation of diverse oncogenic transcription factors in various tumor models. Moreover, novel therapeutic combinations of standard chemotherapeutic drugs with these agents have significantly improved patient survival by making cancer cells more susceptible to chemotherapy and radiotherapy. In this review, we critically analyze the existing literature on the modulation of diverse transcription factors by various natural compounds and provide views on new directions for accelerating the discovery of novel drug candidates derived from Mother Nature.


PLOS ONE | 2013

Induction of Apoptosis in Human Breast Cancer Cells via Caspase Pathway by Vernodalin Isolated from Centratherum anthelminticum (L.) Seeds

Chung Yeng Looi; Aditya Arya; Foo Kit Cheah; Bushra Muharram; Kok Hoong Leong; Khalit Mohamad; Won Fen Wong; Nitika Rai; Mohd Rais Mustafa

Background Centratherum anthelminticum (L.) seeds (CA) is a well known medicinal herb in Indian sub-continent. We recently reported anti-oxidant property of chloroform fraction of Centratherum anthelminticum (L.) seeds (CACF) by inhibiting tumor necrosis factor-α (TNF-α)-induced growth of human breast cancer cells. However, the active compounds in CACF have not been investigated previously. Methodology/Principal Findings In this study, we showed that CACF inhibited growth of MCF-7 human breast cancer cells. CACF induced apoptosis in MCF-7 cells as marked by cell size shrinkage, deformed cytoskeletal structure and DNA fragmentation. To identify the cytotoxic compound, CACF was subjected to bioassay-guided fractionation which yielded 6 fractions. CACF fraction A and B (CACF-A, -B) demonstrated highest activity among all the fractions. Further HPLC isolation, NMR and LC-MS analysis of CACF-A led to identification of vernodalin as the cytotoxic agent in CACF-A, and -B. 12,13-dihydroxyoleic acid, another major compound in CACF-C fraction was isolated for the first time from Centratherum anthelminticum (L.) seeds but showed no cytotoxic effect against MCF-7 cells. Vernodalin inhibited cell growth of human breast cancer cells MCF-7 and MDA-MB-231 by induction of cell cycle arrest and apoptosis. Increased of reactive oxygen species (ROS) production, coupled with downregulation of anti-apoptotic molecules (Bcl-2, Bcl-xL) led to reduction of mitochondrial membrane potential (MMP) and release of cytochrome c in both human breast cancer cells treated with vernodalin. Release of cytochrome c from mitochondria to cytosol triggered activation of caspase cascade, PARP cleavage, DNA damage and eventually cell death. Conclusions/Significance To the best of our knowledge, this is the first comprehensive study on cytotoxic and apoptotic mechanism of vernodalin isolated from the Centratherum anthelminticum (L.) seeds in human breast cancer cells. Overall, our data suggest a potential therapeutic value of vernodalin to be further developed as new anti-cancer drug.


PLOS ONE | 2015

In Vitro and In Vivo toxicity profiling of ammonium-based deep eutectic solvents.

Maan Hayyan; Chung Yeng Looi; Adeeb Hayyan; Won Fen Wong; Mohd Ali Hashim

The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes.


Biotechnology Advances | 2017

Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges

Yves Paul Mbous; Maan Hayyan; Adeeb Hayyan; Won Fen Wong; Mohd Ali Hashim; Chung Yeng Looi

Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.


Journal of Ethnopharmacology | 2012

Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats

Aditya Arya; Chung Yeng Looi; Shiau Chuen Cheah; Mohd Rais Mustafa; Mustafa Ali Mohd

ETHNOPHARMACOLOGICAL RELEVANCE Seeds of Centratherum anthelminticum (Asteraceae) have been popularly used in Ayurvedic medicine to treat diabetes and skin disorders. Folk medicine from Rayalaseema (Andhra Pradesh, India) reported wide spread usage in diabetes. AIM OF THE STUDY To investigate the hypoglycemic properties and mechanism of the methanolic fraction of C. anthelminticum seeds (CAMFs) on mouse β-TC6 pancreatic cell line and streptozotocin (STZ)-induced diabetic rat models. MATERIALS AND METHODS We investigated the crude methanolic fraction of C. anthelminticum seeds (CAMFs) on β-TC6 cell line and confirmed its effects on type 1 and type 2 diabetic rats to understand its mechanism in managing diabetes mellitus. CAMFs were initially tested on β-TC6 cells for cytotoxicity, 2-NBDG glucose uptake, insulin secretion and glucose transporter (GLUT-1, 2 and 4) protein expression. Furthermore, streptozotocin (STZ)-induced type 1 diabetic and STZ-nicotinamide-induced type 2 diabetic rats were intraperitoneally (i.p) injected or administered orally with CAMFs daily for 28 days. The effect of CAMFs on blood glucose and insulin levels was subsequently evaluated. RESULTS In cell line studies, CAMFs showed non-cytotoxic effect on β-TC6 cell proliferation compared to untreated control cells at 50 μg/ml. CAMFs increased glucose uptake and insulin secretion dose-dependently by up-regulating GLUT-2 and GLUT-4 expression in these cells. Further in vivo studies on streptozotocin induced diabetic rat models revealed that CAMFs significantly reduced hyperglycemia by augmenting insulin secretion in type 2 diabetic rats. However, CAMFs displayed less significant effects on type 1 diabetic rats. CONCLUSIONS CAMFs demonstrated anti-diabetic potential on β-TC6 cells and type 2 diabetic rat model, plausibly through enhancing glucose uptake and insulin secretion.


Evidence-based Complementary and Alternative Medicine | 2012

Dentatin Induces Apoptosis in Prostate Cancer Cells via Bcl-2, Bcl-xL, Survivin Downregulation, Caspase-9, -3/7 Activation, and NF-κB Inhibition

Ismail Adam Arbab; Chung Yeng Looi; Ahmad Bustamam Abdul; Foo Kit Cheah; Won Fen Wong; Syam Mohan; Aditya Arya; Manal Mohamed Elhassan Taha; Bushra Muharram; Mohd Rais Mustafa; Siddig Ibrahim Abdelwahab

This study was set to investigate antiproliferative potential of dentatin (a natural coumarin isolated from Clausena excavata Burm. F) against prostate cancer and to delineate the underlying mechanism of action. Treatment with dentatin dose-dependently inhibited cell growth of PC-3 and LNCaP prostate cancer cell lines, whereas it showed less cytotoxic effects on normal prostate epithelial cell line (RWPE-1). The inhibitory effect of dentatin on prostate cancer cell growth was due to induction of apoptosis as evidenced by Annexin V staining and cell shrinkage. We found that dentatin-mediated accumulation of reactive oxygen species (ROS) and downregulated expression levels of antiapoptotic molecules (Bcl-2, Bcl-xL, and Survivin), leading to disruption of mitochondrial membrane potential (MMP), cell membrane permeability, and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-9, -3/7 activities, and subsequent DNA fragmentation. In addition, we found that dentatin inhibited TNF-α-induced nuclear translocation of p65, suggesting dentatin as a potential NF-κB inhibitor. Thus, we suggest that dentatin may have therapeutic value in prostate cancer treatment worthy of further development.


BMC Complementary and Alternative Medicine | 2013

Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways

Chung Yeng Looi; Bushra Moharram; Mohammadjavad Paydar; Yi Li Wong; Kok Hoong Leong; Khalit Mohamad; Aditya Arya; Won Fen Wong; Mohd Rais Mustafa

BackgroundCentratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called “Kayakalp”, commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved.MethodsA chloroform fraction was extracted from C. anthelminticum (CACF). Bioactive compounds of the CACF were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human melanoma cell line A375 was treated with CACF in vitro. Effects of CACF on growth inhibition, morphology, stress and survival of the cell were examined with MTT, high content screening (HSC) array scan and flow cytometry analyses. Involvement of intrinsic or extrinsic pathways in the CACF-induced A375 cell death mechanism was examined using a caspase luminescence assay. The results were further verified with different caspase inhibitors. In addition, Western blot analysis was performed to elucidate the changes in apoptosis-associated molecules. Finally, the effect of CACF on the NF-κB nuclear translocation ability was assayed.ResultsThe MTT assay showed that CACF dose-dependently inhibited cell growth of A375, while exerted less cytotoxic effect on normal primary epithelial melanocytes. We demonstrated that CACF induced cell growth inhibition through apoptosis, as evidenced by cell shrinkage, increased annexin V staining and formation of membrane blebs. CACF treatment also resulted in higher reactive oxygen species (ROS) production and lower Bcl-2 expression, leading to decrease mitochondrial membrane potential (MMP). Disruption of the MMP facilitated the release of mitochondrial cytochrome c, which activates caspase-9 and downstream caspase-3/7, resulting in DNA fragmentation and up-regulation of p53 in melanoma cells. Moreover, CACF prevented TNF-α-induced NF-κB nuclear translocation, which further committed A375 cells toward apoptosis.ConclusionsTogether, our findings suggest CACF as a potential therapeutic agent against human melanoma malignancy.


Food and Chemical Toxicology | 2012

The methanolic fraction of Centratherum anthelminticum seed downregulates pro-inflammatory cytokines, oxidative stress, and hyperglycemia in STZ-nicotinamide-induced type 2 diabetic rats.

Aditya Arya; Shiau Chuen Cheah; Chung Yeng Looi; Hairin Taha; Mohd Rais Mustafa; Mustafa Ali Mohd

This study aimed to ascertain the potential of Centratherum anthelminticum seeds methanolic fraction (CAMFs) for the management of type 2 diabetes and its associated complications. CAMFs was initially tested on β-TC6 cells for H(2)O(2)-induced nuclear factor-κB (NF-κB) translocation effects. The result displayed that CAMFs significantly inhibited NF-κB translocation from cytoplasm into the nucleus, dose-dependently. Furthermore, a 12-week sub-chronic CAMFs study was carried out on streptozotocin (STZ)-nicotinamide-induced type 2 diabetic rat model to evaluate glycemia, essential biochemical parameters, lipid levels, oxidative stress markers, and pro-inflammatory cytokines level. Our study result showed that CAMFs reduced hyperglycemia by increasing serum insulin, C-peptide, total protein, and albumin levels, significantly. Whereas, elevated blood glucose, glycated hemoglobin, lipids and enzyme activities were restored to near normal. CAMFs confirmed antioxidant potential by elevating glutathione (GSH) and reducing malondialdehyde (MDA) levels in diabetic rats. Interestingly, CAMFs down-regulated elevated tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in the tissues and serum of the diabetic rats. We conclude that CAMFs exerted apparent antidiabetic effects and demonstrated as a valuable candidate nutraceutical for insulin-resistant type 2 diabetes and its associated complications such as dyslipidemia, oxidative stress, and inflammation.


SpringerPlus | 2016

Natural deep eutectic solvents: cytotoxic profile

Maan Hayyan; Yves Paul Mbous; Chung Yeng Looi; Won Fen Wong; Adeeb Hayyan; Zulhaziman Salleh; Ozair Mohd-Ali

AbstractThe purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes’ phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures.

Collaboration


Dive into the Chung Yeng Looi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge