Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chung Yi Cheng is active.

Publication


Featured researches published by Chung Yi Cheng.


American Journal of Kidney Diseases | 2011

Role of Klotho in Aging, Phosphate Metabolism, and CKD

George B. John; Chung Yi Cheng; Makoto Kuro-o

The klotho gene (KL) was identified first as a putative aging-suppressor gene that extended life span when overexpressed and accelerated aging-like phenotypes when disrupted in mice. It encodes a single-pass transmembrane protein and is expressed predominantly in kidney, where it functions as an obligate coreceptor for fibroblast growth factor 23 (FGF-23). FGF-23 is a bone-derived hormone that suppresses phosphate reabsorption and 1,25 dihydroxyvitamin D(3) (vitamin D) synthesis in the kidney. Klotho also is expressed in the parathyroid gland, where FGF-23 decreases parathyroid hormone expression and secretion, further suppressing vitamin D synthesis in kidney. Thus, FGF-23 functions as a phosphaturic hormone and a counter-regulatory hormone for vitamin D, thereby inducing negative phosphate balance. Mice lacking either FGF-23 or Klotho show hyperphosphatemia in addition to developing multiple aging-like phenotypes, which can be rescued by resolving phosphate retention. These findings have unveiled an unexpected link between aging and phosphate. In patients with chronic kidney disease (CKD), phosphate retention is seen universally and has been associated with increased mortality risk. Patients with CKD have high serum FGF-23 levels with decreased klotho expression in the kidney and parathyroid, rendering FGF-23 and Klotho as potential biomarkers and therapeutic targets for CKD. The Klotho protein not only serves as a coreceptor for FGF-23, but also functions as a humoral factor. Klothos extracellular domain is released into blood and urine by ectodomain shedding and exerts various functions independently of FGF-23, including regulation of multiple ion channels and transporters. Decreased urinary Klotho protein level has been identified as one of the earliest biomarkers of CKD progression. This review focuses on the current understanding of Klotho protein function, with emphasis on its potential involvement in the pathophysiologic process of CKD.


European Journal of Pharmacology | 2013

The secreted Klotho protein restores phosphate retention and suppresses accelerated aging in Klotho mutant mice

Tso Hsiao Chen; Makoto Kuro-o; Cheng Hsien Chen; Yuh Mou Sue; Yen Cheng Chen; Ho Han Wu; Chung Yi Cheng

Klotho was identified as the responsible gene in a mutant mouse line whose disruption results in a variety of premature aging-related phenotypes. Nonetheless, the related mechanisms were still unknown. Many studies report that dietary phosphate restriction and genetic ablation of vitamin D pathways indirectly reverse premature aging processes in these mice. Furthermore, transgenic overexpression of klotho in mice extends their life span through inhibition of insulin and IGF1 signaling. We found that intraperitoneal injection of recombinant soluble Klotho protein at dose of 0.02 mg/kg every other day effectively extends the life span of kl/kl mice by 17.4%. Soluble Klotho administration also ameliorated premature aging-related phenotype, such as growth retardation, premature thymus involution and vascular calcification, and effectively enhanced urinary phosphate excretion in kl/kl mice. Klotho treatment attenuated renal fibrosis through down-regulation of transforming growth factor-β signaling as well as reduced cellular senescence through down-regulation of p21-cip1 mRNA levels. In addition, soluble Klotho treatment significantly reduced both renal and aorta calcium deposits. In conclusion, our study shows the therapeutic potential of soluble Klotho protein to treat age-related disorders in mice.


European Journal of Pharmacology | 2011

Leptin reduces gentamicin-induced apoptosis in rat renal tubular cells via the PI3K-Akt signaling pathway

Yen Cheng Chen; Cheng Hsien Chen; Yung Ho Hsu; Tso Hsiao Chen; Yuh Mou Sue; Chung Yi Cheng; Tzen-Wen Chen

Leptin, a circulating hormone secreted mainly from adipose tissues, possesses protective effects on many cell types. Serum leptin concentration increases in patients with chronic renal failure and those undergoing maintenance dialysis. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. In the present study, we intended to investigate the influence of leptin on apoptotic pathways and its mechanism in rat renal tubular cells treated with gentamicin. By using Annexin V-FITC/propidium iodide double staining, we found that leptin expressed a dose-dependent protective effect against gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) within 24h. Pretreatment of the cells with 50 or 100 ng/ml of leptin induced Bcl-2 and Bcl-x(L), increased the phosphorylation of Bad, and decreased the cleaved caspase-3 and caspase-9 in gentamicin-treated NRK-52E cells. Leptin also suppressed the activation of the transcription factor NF-κB and upregulated Akt activation in gentamicin-treated NRK-52E cells. We found that leptin activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway as demonstrated by the suppression of the anti-apoptotic effect of leptin by wortmannin. The treatment of wortmannin suppressed the leptin-induced phospho-Akt, Bcl-2, phospho-Bad as well as Bcl-x(L), and recovered the leptin-reduced cleaved caspase-3 and caspase-9. Based on our results, we suggested that leptin can attenuate gentamicin-induced apoptotic injury in rat renal tubular cells through PI3K/Akt signaling pathway.


Nephrology Dialysis Transplantation | 2009

Peroxisome proliferator-activated receptor alpha plays a crucial role in l-carnitine anti-apoptosis effect in renal tubular cells

Hsi Hsien Chen; Yuh Mou Sue; Cheng Hsien Chen; Yung Ho Hsu; Chun-Cheng Hou; Chung Yi Cheng; Shih Li Lin; Wei Lun Tsai; Tzen-Wen Chen; Tso Hsiao Chen

BACKGROUND L-carnitine is synthesized mainly in the liver and kidneys from lysine and methionine from dietary sources. Many reports have shown that L-carnitine can protect certain cells against the toxicity of several anticancer and toxic agents, although the detailed mechanism is poorly understood. In this study, we investigated the protective effect of L-carnitine and its molecular mechanism in renal tubular cells undergoing gentamicin-induced apoptosis. METHODS Rat tubular cell line (NRK-52E) and mice were used as the model system. Gentamicin-induced apoptosis in renal tubular cells was examined using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling. We introduced short interfering RNA transfection and gene-deficient mice to investigate the protective mechanism of L-carnitine. RESULTS We found that L-carnitine inhibited gentamicin-induced reactive oxygen species generation and correlative apoptotic pathways, resulting in the protection of NRK-52E cells from gentamicin-induced apoptosis. The treatment of L-carnitine also lessened gentamicin-induced renal tubular cell apoptosis in mice. L-carnitine was found to increase the prostacyclin (PGI(2)) generation in NRK-52E cells. The siRNA transfection for PGI(2) synthase significantly reduced L-carnitine-induced PGI(2) and L-carnitines protective effect. We found that the activity of the potential PGI(2) nuclear receptor, peroxisome proliferator-activated receptor alpha (PPARalpha), was elevated by L-carnitine treatment. The siRNA-mediated blockage of PPARalpha considerably reduced the anti-apoptotic effect of L-carnitine. In PPARalpha-deficient mice, L-carnitine treatment also lost the inhibitory effect on gentamicin-induced apoptosis in kidneys. CONCLUSIONS Based on these findings, we suggest that L-carnitine protects renal tubular cells from gentamicin-induced apoptosis through PGI(2)-mediated PPARalpha activation.


Advances in Chronic Kidney Disease | 2011

Molecular Regulation of Phosphate Metabolism by Fibroblast Growth Factor-23–Klotho System

Chung Yi Cheng; Makoto Kuro-o; Mohammed S. Razzaque

Phosphorus is an essential nutrient and is routinely assimilated through consumption of food. The bodys need of phosphate is usually fulfilled by intestinal absorption of this element from the consumed food, whereas its serum level is tightly regulated by renal excretion or reabsorption. Sodium-dependent phosphate transporters, located in the luminal side of the proximal tubular epithelial cells, have a molecular control on renal phosphate excretion and reabsorption. The systemic regulation of phosphate metabolism is a complex multiorgan process, and the identification of fibroblast growth factor-23 (FGF23)-Klotho system as a potent phosphatonin has provided new mechanistic insights into the homeostatic control of phosphate. Hypophosphatemia as a result of an increase in urinary phosphate wasting after activation of the FGF23-Klotho system is a common phenomenon, observed in both animal and human studies, whereas suppression of the FGF23-Klotho system leads to the development of hyperphosphatemia. This article will briefly summarize how delicate interactions of the FGF23-klotho system can regulate systemic phosphate homeostasis.


PLOS ONE | 2014

MicroRNA-328 inhibits renal tubular cell epithelial-to-mesenchymal transition by targeting the CD44 in pressure-induced renal fibrosis

Cheng Hsien Chen; Chung Yi Cheng; Yen Cheng Chen; Yuh Mou Sue; Chung Te Liu; Tzu-Hurng Cheng; Yung Ho Hsu; Tso Hsiao Chen

Epithelial-mesenchymal transition (EMT) occurs in stressed tubular epithelial cells, contributing to renal fibrosis. Initial mechanisms promoting EMT are unknown. Pressure force is an important mechanism contributing to the induction and progression of renal fibrogenesis in ureteric obstruction. In our study of cultured rat renal tubular cells (NRK-52E) under 60 mmHg of pressure, we found that the epithelial marker E-cadherin decreased and mesenchymal markers, e.g., α-smooth muscle actin, fibronectin and Snail, increased. Pressure also induced the expression of connective tissue growth factor and transforming growth factor-β. MicroRNA array assays showed that pressure reduced miR-328 at the initial stage of pressurization. We identified a potential target sequence of miR-328 in rat CD44 3′-untranslated regions. In contrast with the miR-328 expression, CD44 expression was up-regulated at the initial pressurization stage. We also found that miR-328 expression decreased and CD44 increased in ureteric obstruction kidneys in the animal study. CD44 siRNA transfection significantly increased E-cadherin expression and inhibited pressure-induced EMT. Both hyaluronan binding peptide pep-1 and osteopontin neutralizing antibody inhibited pressure-induced EMT. Our results suggest that miR-328-mediated CD44 transient upregulation is an important trigger of the pressure-induced EMT in renal fibrosis.


European Journal of Pharmacology | 2013

Rosuvastatin inhibits pressure-induced fibrotic responses via the expression regulation of prostacyclin and prostaglandin E2 in rat renal tubular cells

Cheng Hsien Chen; Chung Yi Cheng; Yen Cheng Chen; Yuh Mou Sue; Yung Ho Hsu; Wei Lun Tsai; Tso Hsiao Chen

Statins are reported to alleviate renal fibrosis in animal models with ureteral obstruction. However, the molecular mechanism of this antifibrotic effect is still unclear. Pressure force is an important mechanism contributing to induction and progression of tubulointerstitial fibrogenesis in ureteric obstruction. In this study, we investigated the influence of rosuvastatin on pressure-induced fibrotic responses in rat renal tubular cells (NRK-52E). We established an in vitro pressure culture system to study pressure-induced fibrotic responses in NRK-52E cells. When NRK-52E cells were cultured in the pressure culture system, 60 mm Hg of pressure induced the expression of connective tissue growth factor (CTGF), transforming growth factor (TGF)-β, fibronectin, Smad3, and phospho-Smad3. Rosuvastatin significantly reduced these pressure-induced fibrotic responses at concentrations above 10 μM. Rosuvastatin also reduced the TGF-β-induced expression of fibronectin and CTGF in NRK-52E cells. Pretreatment with rosuvastatin significantly induced prostacyclin (PGI(2)) generation, but reduced pressure-induced prostaglandin E(2) (PGE(2)). PGI(2) synthase small interfering RNA (siRNA) transfection significantly inhibited rosuvastatin-induced peroxisome proliferator-activated receptor α activation. The blockage of peroxisome proliferator-activated receptor α by siRNA transfection reduced the inhibitory effect of rosuvastatin on pressure-induced fibrotic responses. N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS398), a specific inhibitor of cyclooxygenase-2, diminished pressure-induced PGE(2) generation, and also reduced pressure-induced fibrotic responses. Additionally, PGE(2) decreased the antifibrotic effect of rosuvastatin. In conclusion, rosuvastatin reduces pressure-induced fibrotic responses in renal tubular cells by enhancing the PGI(2)-peroxisome proliferator-activated receptor α pathway and reducing PGE(2) generation.


Journal of Clinical Apheresis | 2014

High-volume plasma exchange in a patient with acute liver failure due to non-exertional heat stroke in a sauna.

Kuan Jung Chen; Tso Hsiao Chen; Yuh Mou Sue; Tzay Jinn Chen; Chung Yi Cheng

Heat stroke is a life‐threatening condition characterized by an increased core body temperature (over 40°C) and a systemic inflammatory response, which may lead to a syndrome of multiple organ dysfunction. Heat stroke may be due to either strenuous exercise or non‐exercise‐induced exposure to a high environmental temperature. Current management of heat stroke is mostly supportive, with an emphasis on cooling the core body temperature and preventing the development of multiple organ dysfunction. Prognosis of heat stroke depends on the severity of organ involvement. Here, we report a rare case of non‐exercise‐induced heat stroke in a 73‐year‐old male patient who was suffering from acute liver failure after prolonged exposure in a hot sauna room. We successfully managed this patient by administering high‐volume plasma exchange, and the patient recovered completely after treatment. J. Clin. Apheresis 29:281–283, 2014.


European Journal of Pharmacology | 2011

Dipyridamole inhibits lipopolysaccharide-induced cyclooxygenase-2 and monocyte chemoattractant protein-1 via heme oxygenase-1-mediated reactive oxygen species reduction in rat mesangial cells

Yen Cheng Chen; Cheng Hsien Chen; Wen Sheng Ko; Chung Yi Cheng; Yuh Mou Sue; Tso Hsiao Chen

Dipyridamole contributes to its beneficial effects on inflammatory responses in many cell types. The anti-inflammatory mechanisms of dipyridamole on glomerular mesangial cells are mostly uncharacterized. In this study, we monitored the influence of dipyridamole on the expression levels of cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein-1 (MCP-1) in rat mesangial cells stimulated with lipopolysaccharide. Dipyridamole was found to inhibit lipopolysaccharide-induced COX-2 and MCP-1 expression, and reduced lipopolysaccharide-induced reactive oxygen species generation in rat mesangial cells. This inhibitory effect of dipyridamole is independent on cyclic AMP and cyclic GMP increase. Tin protoporphyrin IX (SnPP), a heme oxygenase-1(HO-1) inhibitor, blocked the inhibitory effect of dipyridamole on lipopolysaccharide-induced COX-2 and MCP-1 expression. By applying specific inhibitors in rat mesangial cells, ERK1/2 and p38 MAPK signaling pathways were demonstrated to be involved in the lipopolysaccharide-induced inflammatory responses, and were inhibited by SnPP and N-acetylcysteine treatment. Additionally, dipyridamole was also found to upregulate HO-1 in rat mesangial cells. Therefore, our data suggest that dipyridamole inhibits the expression of COX-2 and MCP-1 in lipopolysaccharide-treated rat mesangial cells via HO-1-mediated reactive oxygen species reduction.


Growth Factors Journal | 2009

Urotensin II induces transactivation of the epidermal growth factor receptor via transient oxidation of SHP-2 in the rat renal tubular cell line NRK-52E

Yuh Mou Sue; Cheng Hsien Chen; Yung Ho Hsu; Chun-Cheng Hou; Chung Yi Cheng; Yen Cheng Chen; Shih Li Lin; Tzen-Wen Chen; Tso Hsiao Chen

Urotensin-II (UII) is a potent vasoactive peptide that has been implicated in cardiac fibrosis and renal diseases. However, the role played by UII in renal tissues is largely unknown. In this study, we investigated the effects of human UII (hUII) on rat renal proximal tubular cells of the NRK-52E line and the role of Src homology 2-containing phosphotyrosine phosphatase (SHP-2) in the hUII-induced transactivation of the epidermal growth factor receptor (EGFR). Exposure to hUII at low concentrations significantly induced proliferation in NRK-52E cells; this effect was inhibited by treatment with an ERK1/2 inhibitor (PD98059). UII treatment increased the phosphorylation of EGFR and induced the generation of reactive oxygen species (ROS). Treatment of the ROS scavenger N-acetyl-cysteine (NAC) inhibited EGFR transactivation and ERK phosphorylation induced by hUII. SHP-2 was found to interact with EGFR and be transiently oxidized following the hUII treatment. In SHP-2 knockdown cells, UII-induced phosphorylation of EGFR was less influenced by NAC, and significantly suppressed by heparin binding (HB)-EGF neutralizing antibody. Our data suggest that the ROS-mediated oxidation of SHP-2 is essential for the hUII-induced mitogenic pathway in NRK-52E cells.

Collaboration


Dive into the Chung Yi Cheng's collaboration.

Top Co-Authors

Avatar

Tso Hsiao Chen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuh Mou Sue

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yen Cheng Chen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Yung Ho Hsu

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun-Cheng Hou

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Tzen-Wen Chen

Taipei Medical University Hospital

View shared research outputs
Top Co-Authors

Avatar

Wei Lun Tsai

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Makoto Kuro-o

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Hsi Hsien Chen

Taipei Medical University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge