Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunhua Han is active.

Publication


Featured researches published by Chunhua Han.


Journal of Biological Chemistry | 2009

Modulation of Nucleotide Excision Repair by Mammalian SWI/SNF Chromatin-remodeling Complex

Qun Zhao; Qi-En Wang; Alo Ray; Gulzar Wani; Chunhua Han; Keisha Milum; Altaf A. Wani

Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2- and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells.

Amit Kumar Srivastava; Chunhua Han; Ran Zhao; Tiantian Cui; Yuntao Dai; Charlene Mao; Weiqiang Zhao; Xiaoli Zhang; Jianhua Yu; Qi-En Wang

Significance Cancer stem cells (CSCs) exhibit enhanced chemo/radiotherapy resistance, and their survival following cancer treatment is believed to be responsible for tumor recurrence and metastasis. Thus, understanding the mechanisms through which CSCs survive conventional chemotherapy is essential for identification of new therapeutic strategies to prevent tumor relapse. Our findings that ovarian CSCs survive cisplatin treatment through elevated expression of polymerase η represent an opportunity to eradicate CSCs and improve the survival of ovarian cancer patients. In addition, identification of miR-93 as the regulator of polymerase η expression provides a target to increase the efficacy of cisplatin treatment. Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.


Journal of Biological Chemistry | 2014

Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis

Jinshan He; Qianzheng Zhu; Gulzar Wani; Nidhi Sharma; Chunhua Han; Jiang Qian; Kyle Pentz; Qi-En Wang; Altaf A. Wani

Background: XPC protein is ubiquitinated, but the ubiquitination does not lead to significant proteolysis of XPC. Results: Ubiquitin-specific protease 7 is a deubiquitinating enzyme (DUB) for XPC. Conclusion: USP7 deubiquitination prevents XPC from undergoing UV-induced and VCP/p97-regulated XPC proteolysis. Significance: USP7 and VCP/p97 involvement in XPC regulation is crucial for understanding how nucleotide excision repair is executed and regulated in eukaryotic cells. Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.


Molecular Cancer | 2011

Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells

Qi-En Wang; Keisha Milum; Chunhua Han; Yi-Wen Huang; Gulzar Wani; Jürgen Thomale; Altaf A. Wani

BackgroundWhile platinum-based chemotherapeutic agents are widely used to treat various solid tumors, the acquired platinum resistance is a major impediment in their successful treatment. Since enhanced DNA repair capacity is a major factor in conferring cisplatin resistance, targeting of DNA repair pathways is an effective stratagem for overcoming cisplatin resistance. This study was designed to delineate the role of nucleotide excision repair (NER), the principal mechanism for the removal of cisplatin-induced DNA intrastrand crosslinks, in cisplatin resistance and reveal the impact of DNA repair interference on cisplatin sensitivity in human ovarian cancer cells.ResultsWe assessed the inherent NER efficiency of multiple matched pairs of cisplatin-sensitive and -resistant ovarian cancer cell lines and their expression of NER-related factors at mRNA and protein levels. Our results showed that only the cisplatin-resistant ovarian cancer cell line PEO4 possessed an increased NER capacity compared to its inherently NER-inefficient parental line PEO1. Several other cisplatin-resistant cell lines, including CP70, CDDP and 2008C13, exhibited a normal and parental cell-comparable NER capacity for removing cisplatin-induced DNA intrastrand cross-links (Pt-GG). Concomitant gene expression analysis revealed discordance in mRNA and protein levels of NER factors in various ovarian cancer cell lines and NER proteins level were unrelated to the cisplatin sensitivity of these cell lines. Although knockdown of NER factors was able to compromise the NER efficiency, it only caused a minimal effect on cisplatin sensitivity. On the contrary, downregulation of BRCA2, a critical protein for homologous recombination repair (HRR), significantly enhanced the efficacy of cisplatin in killing ovarian cancer cell line PEO4.ConclusionOur studies indicate that the level of NER factors in ovarian cancer cell lines is neither a determinant of their NER capacity nor of the sensitivity to cisplatin, and suggest that manipulation of the HRR but not the NER factor expression provides an effective strategy for sensitizing cisplatin-resistant tumors to platinating agents.


Nucleic Acids Research | 2013

p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair

Qi-En Wang; Chunhua Han; Ran Zhao; Gulzar Wani; Qianzheng Zhu; Li Gong; Aruna Battu; Ira Racoma; Nidhi Sharma; Altaf A. Wani

Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER.


Mutation Research | 2011

Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment

Qi-En Wang; Chunhua Han; Keisha Milum; Altaf A. Wani

Piwil2 (mili in mouse or hili in humans), a member of the PIWI/Argonaute gene family, plays important roles in stem cell self-renewal, RNA silencing, and translational regulation in various organisms. Recent demonstration of stable Piwil2 expression in pre-cancerous stem cells and in various human and animal tumor cell lines suggests its association in tumorigenesis. Here, we show that cisplatin induces chromatin relaxation in Mili-wild type (WT) mouse embryonic fibroblasts (MEFs), but not in Mili-knockout (KO) MEFs. Moreover, in contrast to Mili-WT MEFs, Mili-KO MEFs showed a discernable H3 hypoacetylation response upon cisplatin treatment. Levels of the histone acetyltransferase (HAT), p300, were dramatically different due to a consistent cisplatin post-treatment decrease in Mili-WT and an increase in Mili-KO MEFs. Concomitant reduction of specific HAT activity of p300 could explain the decrease of H3 acetylation in Mili-KO MEFs. Our data also shows Mili is required for maintaining the euchromatic marks in MEFs upon cisplatin treatment. In addition, Mili-KO MEFs exhibited a significant deficiency in repairing cisplatin-induced DNA damage and displayed higher sensitivity to cisplatin. Further analysis revealed that Piwil2 was also enhanced in two completely different cisplatin-resistant ovarian cancer cell lines. Interestingly, knockdown of Piwil2 expression in these two cell lines also resulted in their enhanced sensitivity to cisplatin and decreased their efficiency for removing cisplatin-induced DNA intrastrand crosslinks (Pt-GG). The overall data showed that Piwil2 is a key factor in regulating chromatin modifications especially in response to cisplatin. To conclude, the overexpression of Piwil2 in some cancers could lead to cellular cisplatin resistance, possibly due to enhanced chromatin condensation affecting normal DNA repair.


International Journal of Cancer | 2010

Overexpression of DDB2 enhances the sensitivity of human ovarian cancer cells to cisplatin by augmenting cellular apoptosis.

Bassant M. Barakat; Qi-En Wang; Chunhua Han; Keisha Milum; De-Tao Yin; Qun Zhao; Gulzar Wani; El-Shaimaa A. Arafa; Mohamed A. El-Mahdy; Altaf A. Wani

Cisplatin is one of the most widely used anticancer agents, displaying activity against a wide variety of tumors. However, development of drug resistance presents a challenging barrier to successful cancer treatment by cisplatin. To understand the mechanism of cisplatin resistance, we investigated the role of damaged DNA binding protein complex subunit 2 (DDB2) in cisplatin‐induced cytotoxicity and apoptosis. We show that DDB2 is not required for the repair of cisplatin‐induced DNA damage, but can be induced by cisplatin treatment. DDB2‐deficient noncancer cells exhibit enhanced resistance to cell growth inhibition and apoptosis induced by cisplatin than cells with fully restored DDB2 function. Moreover, DDB2 expression in cisplatin‐resistant ovarian cancer cell line CP70 and MCP2 was lower than their cisplatin‐sensitive parental A2780 cells. Overexpression of DDB2 sensitized CP70 cells to cisplatin‐induced cytotoxicity and apoptosis via activation of the caspase pathway and downregulation of antiapoptotic Bcl‐2 protein. Further analysis indicates that the overexpression of DDB2 in CP70 cells downregulates Bcl‐2 expression through decreasing Bcl‐2 mRNA level. These results suggest that ovarian cancer cells containing high level of DDB2 become susceptible to cisplatin by undergoing enhanced apoptosis.


PLOS ONE | 2011

Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

De Tao Yin; Qi-En Wang; Li Chen; Meng Yao Liu; Chunhua Han; Qingtao Yan; Rulong Shen; Gang He; Wenrui Duan; Jian Jian Li; Altaf A. Wani; Jian Xin Gao

DNA damage response (DDR) is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV) irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili-/- MEFs) were defective in cyclobutane pyrimidine dimers (CPD) repair after UV treatment. As a result, the UV-treated mili-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose) polymerase (PARP) and Bik. The impaired DNA repair in the mili-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine–guanine (Pt-[GG]) and double strand break (DSB) repair were also defective in the mili-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR), respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.


Tumor Biology | 2016

miR-93 promotes TGF-β-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells.

Meihua Qu; Chunhua Han; Amit Kumar Srivastava; Tiantian Cui; Ning Zou; Zhiqin Gao; Qi-En Wang

The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-β-mediated EMT in lung cancer cells. miR-93 binds directly to the 3′-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-β signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-β treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-β-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.


Molecular Cancer Research | 2014

DDB2 Suppresses Tumorigenicity by Limiting the Cancer Stem Cell Population in Ovarian Cancer

Chunhua Han; Ran Zhao; Xingluo Liu; Amit Kumar Srivastava; Li Gong; Hsiaoyin Mao; Meihua Qu; Weiqiang Zhao; Jianhua Yu; Qi-En Wang

Ovarian cancer is an extremely aggressive disease associated with a high percentage of tumor recurrence and chemotherapy resistance. Understanding the underlying mechanism of tumor relapse is crucial for effective therapy of ovarian cancer. DNA damage-binding protein 2 (DDB2) is a DNA repair factor mainly involved in nucleotide excision repair. Here, a novel role was identified for DDB2 in the tumorigenesis of ovarian cancer cells and the prognosis of patients with ovarian cancer. Overexpressing DDB2 in human ovarian cancer cells suppressed its capability to recapitulate tumors in athymic nude mice. Mechanistic investigation demonstrated that DDB2 is able to reduce the cancer stem cell (CSC) population characterized with high aldehyde dehydrogenase activity in ovarian cancer cells, probably through disrupting the self-renewal capacity of CSCs. Low DDB2 expression correlates with poor outcomes among patients with ovarian cancer, as revealed from the analysis of publicly available gene expression array datasets. Given the finding that DDB2 protein expression is low in ovarian tumor cells, enhancement of DDB2 expression is a promising strategy to eradicate CSCs and would help to halt ovarian cancer relapse. Implications: DDB2 status has prognostic potential, and elevating its expression eradicates CSCs and could reduce ovarian cancer relapse. Mol Cancer Res; 12(5); 784–94. ©2014 AACR.

Collaboration


Dive into the Chunhua Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ran Zhao

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar Srivastava

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge