Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunhua Shen is active.

Publication


Featured researches published by Chunhua Shen.


ACM Transactions on Intelligent Systems and Technology | 2013

A survey of appearance models in visual object tracking

Xi Li; Weiming Hu; Chunhua Shen; Zhongfei Zhang; Anthony R. Dick; Anton van den Hengel

Visual object tracking is a significant computer vision task which can be applied to many domains, such as visual surveillance, human computer interaction, and video compression. Despite extensive research on this topic, it still suffers from difficulties in handling complex object appearance changes caused by factors such as illumination variation, partial occlusion, shape deformation, and camera motion. Therefore, effective modeling of the 2D appearance of tracked objects is a key issue for the success of a visual tracker. In the literature, researchers have proposed a variety of 2D appearance models. To help readers swiftly learn the recent advances in 2D appearance models for visual object tracking, we contribute this survey, which provides a detailed review of the existing 2D appearance models. In particular, this survey takes a module-based architecture that enables readers to easily grasp the key points of visual object tracking. In this survey, we first decompose the problem of appearance modeling into two different processing stages: visual representation and statistical modeling. Then, different 2D appearance models are categorized and discussed with respect to their composition modules. Finally, we address several issues of interest as well as the remaining challenges for future research on this topic. The contributions of this survey are fourfold. First, we review the literature of visual representations according to their feature-construction mechanisms (i.e., local and global). Second, the existing statistical modeling schemes for tracking-by-detection are reviewed according to their model-construction mechanisms: generative, discriminative, and hybrid generative-discriminative. Third, each type of visual representations or statistical modeling techniques is analyzed and discussed from a theoretical or practical viewpoint. Fourth, the existing benchmark resources (e.g., source codes and video datasets) are examined in this survey.


computer vision and pattern recognition | 2015

Supervised Discrete Hashing

Fumin Shen; Chunhua Shen; Wei Liu; Heng Tao Shen

Recently, learning based hashing techniques have attracted broad research interests because they can support efficient storage and retrieval for high-dimensional data such as images, videos, documents, etc. However, a major difficulty of learning to hash lies in handling the discrete constraints imposed on the pursued hash codes, which typically makes hash optimizations very challenging (NP-hard in general). In this work, we propose a new supervised hashing framework, where the learning objective is to generate the optimal binary hash codes for linear classification. By introducing an auxiliary variable, we reformulate the objective such that it can be solved substantially efficiently by employing a regularization algorithm. One of the key steps in this algorithm is to solve a regularization sub-problem associated with the NP-hard binary optimization. We show that the sub-problem admits an analytical solution via cyclic coordinate descent. As such, a high-quality discrete solution can eventually be obtained in an efficient computing manner, therefore enabling to tackle massive datasets. We evaluate the proposed approach, dubbed Supervised Discrete Hashing (SDH), on four large image datasets and demonstrate its superiority to the state-of-the-art hashing methods in large-scale image retrieval.


computer vision and pattern recognition | 2011

Is face recognition really a Compressive Sensing problem

Qinfeng Shi; Anders Eriksson; Anton van den Hengel; Chunhua Shen

Compressive Sensing has become one of the standard methods of face recognition within the literature. We show, however, that the sparsity assumption which underpins much of this work is not supported by the data. This lack of sparsity in the data means that compressive sensing approach cannot be guaranteed to recover the exact signal, and therefore that sparse approximations may not deliver the robustness or performance desired. In this vein we show that a simple £2 approach to the face recognition problem is not only significantly more accurate than the state-of-the-art approach, it is also more robust, and much faster. These results are demonstrated on the publicly available YaleB and AR face datasets but have implications for the application of Compressive Sensing more broadly.


computer vision and pattern recognition | 2011

Real-time visual tracking using compressive sensing

Hanxi Li; Chunhua Shen; Qinfeng Shi

The ℓ1 tracker obtains robustness by seeking a sparse representation of the tracking object via ℓ1 norm minimization. However, the high computational complexity involved in the ℓ1 tracker may hamper its applications in real-time processing scenarios. Here we propose Real-time Com-pressive Sensing Tracking (RTCST) by exploiting the signal recovery power of Compressive Sensing (CS). Dimensionality reduction and a customized Orthogonal Matching Pursuit (OMP) algorithm are adopted to accelerate the CS tracking. As a result, our algorithm achieves a realtime speed that is up to 5,000 times faster than that of the ℓ1 tracker. Meanwhile, RTCST still produces competitive (sometimes even superior) tracking accuracy compared to the ℓ1 tracker. Furthermore, for a stationary camera, a refined tracker is designed by integrating a CS-based background model (CSBM) into tracking. This CSBM-equipped tracker, termed RTCST-B, outperforms most state-of-the-art trackers in terms of both accuracy and robustness. Finally, our experimental results on various video sequences, which are verified by a new metric — Tracking Success Probability (TSP), demonstrate the excellence of the proposed algorithms.


computer vision and pattern recognition | 2014

Fast Supervised Hashing with Decision Trees for High-Dimensional Data

Guosheng Lin; Chunhua Shen; Qinfeng Shi; Anton van den Hengel; David Suter

Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the Hamming space. Non-linear hash functions have demonstrated their advantage over linear ones due to their powerful generalization capability. In the literature, kernel functions are typically used to achieve non-linearity in hashing, which achieve encouraging retrieval perfor- mance at the price of slow evaluation and training time. Here we propose to use boosted decision trees for achieving non-linearity in hashing, which are fast to train and evaluate, hence more suitable for hashing with high dimensional data. In our approach, we first propose sub-modular formulations for the hashing binary code inference problem and an efficient GraphCut based block search method for solving large-scale inference. Then we learn hash func- tions by training boosted decision trees to fit the binary codes. Experiments demonstrate that our proposed method significantly outperforms most state-of-the-art methods in retrieval precision and training time. Especially for high- dimensional data, our method is orders of magnitude faster than many methods in terms of training time.


computer vision and pattern recognition | 2013

Part-Based Visual Tracking with Online Latent Structural Learning

Rui Yao; Qinfeng Shi; Chunhua Shen; Yanning Zhang; Anton van den Hengel

Despite many advances made in the area, deformable targets and partial occlusions continue to represent key problems in visual tracking. Structured learning has shown good results when applied to tracking whole targets, but applying this approach to a part-based target model is complicated by the need to model the relationships between parts, and to avoid lengthy initialisation processes. We thus propose a method which models the unknown parts using latent variables. In doing so we extend the online algorithm pegasos to the structured prediction case (i.e., predicting the location of the bounding boxes) with latent part variables. To better estimate the parts, and to avoid over-fitting caused by the extra model complexity/capacity introduced by the parts, we propose a two-stage training process, based on the primal rather than the dual form. We then show that the method outperforms the state-of-the-art (linear and non-linear kernel) trackers.


pattern recognition and machine intelligence | 2007

Adaptive Object Tracking Based on an Effective Appearance Filter

Hanzi Wang; David Suter; Konrad Schindler; Chunhua Shen

We propose a similarity measure based on a spatial-color mixture of Gaussians (SMOG) appearance model for particle filters. This improves on the popular similarity measure based on color histograms because it considers not only the colors in a region but also the spatial layout of the colors. Hence, the SMOG-based similarity measure is more discriminative. To efficiently compute the parameters for SMOG, we propose a new technique with which the computational time is greatly reduced. We also extend our method by integrating multiple cues to increase the reliability and robustness. Experiments show that our method can successfully track objects in many difficult situations.


computer vision and pattern recognition | 2015

Learning to rank in person re-identification with metric ensembles

Sakrapee Paisitkriangkrai; Chunhua Shen; Anton van den Hengel

We propose an effective structured learning based approach to the problem of person re-identification which outperforms the current state-of-the-art on most benchmark data sets evaluated. Our framework is built on the basis of multiple low-level hand-crafted and high-level visual features. We then formulate two optimization algorithms, which directly optimize evaluation measures commonly used in person re-identification, also known as the Cumulative Matching Characteristic (CMC) curve. Our new approach is practical to many real-world surveillance applications as the re-identification performance can be concentrated in the range of most practical importance. The combination of these factors leads to a person re-identification system which outperforms most existing algorithms. More importantly, we advance state-of-the-art results on person re-identification by improving the rank-1 recognition rates from 40% to 50% on the iLIDS benchmark, 16% to 18% on the PRID2011 benchmark, 43% to 46% on the VIPeR benchmark, 34% to 53% on the CUHK01 benchmark and 21% to 62% on the CUHK03 benchmark.


computer vision and pattern recognition | 2013

Inductive Hashing on Manifolds

Fumin Shen; Chunhua Shen; Qinfeng Shi; Anton van den Hengel; Zhenmin Tang

Learning based hashing methods have attracted considerable attention due to their ability to greatly increase the scale at which existing algorithms may operate. Most of these methods are designed to generate binary codes that preserve the Euclidean distance in the original space. Manifold learning techniques, in contrast, are better able to model the intrinsic structure embedded in the original high-dimensional data. The complexity of these models, and the problems with out-of-sample data, have previously rendered them unsuitable for application to large-scale embedding, however. In this work, we consider how to learn compact binary embeddings on their intrinsic manifolds. In order to address the above-mentioned difficulties, we describe an efficient, inductive solution to the out-of-sample data problem, and a process by which non-parametric manifold learning may be used as the basis of a hashing method. Our proposed approach thus allows the development of a range of new hashing techniques exploiting the flexibility of the wide variety of manifold learning approaches available. We particularly show that hashing on the basis of t-SNE [29] outperforms state-of-the-art hashing methods on large-scale benchmark datasets, and is very effective for image classification with very short code lengths.


computer vision and pattern recognition | 2015

Deep convolutional neural fields for depth estimation from a single image

Fayao Liu; Chunhua Shen; Guosheng Lin

We consider the problem of depth estimation from a single monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo correspondences, motions etc. Previous efforts have been focusing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) are setting new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimations can be naturally formulated into a continuous conditional random field (CRF) learning problem. Therefore, we in this paper present a deep convolutional neural field model for estimating depths from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF. Specifically, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. The proposed method can be used for depth estimations of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be analytically calculated, thus we can exactly solve the log-likelihood optimization. Moreover, solving the MAP problem for predicting depths of a new image is highly efficient as closed-form solutions exist. We experimentally demonstrate that the proposed method outperforms state-of-the-art depth estimation methods on both indoor and outdoor scene datasets.

Collaboration


Dive into the Chunhua Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Wang

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian D. Reid

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinfeng Shi

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Wu

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

Information Technology University

View shared research outputs
Researchain Logo
Decentralizing Knowledge