Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunhui Song is active.

Publication


Featured researches published by Chunhui Song.


Geological Society of America Bulletin | 2005

Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China

Xiaomin Fang; Maodu Yan; Rob Van der Voo; David K. Rea; Chunhui Song; Josep M. Parés; Junping Gao; Junsheng Nie; Shuang Dai

The Cenozoic intramontane Gonghe–Guide Basin in Qinghai Province, China, is tectonically controlled by the sinistral strike-slip framework of the Kunlun and Altyn Tagh–South Qilian faults in the northeastern Tibetan Plateau. The basin is filled with thick Cenozoic clastic sedimentary formations, which provide important evidence of the deformation of this part of the plateau, although they have long lacked good age constraints. Detailed magnetostratigraphic and paleontologic investigations of five sections in the Guide Basin and their lithologic and sedimentary characteristics allow us to divide a formerly undifferentiated unit (the Guide Group) into six formations (where ages are now magnetostratigraphically well established, they are given in parentheses): the Amigang (1.8–2.6 Ma), Ganjia (2.6–3.6 Ma), and Herjia formations (3.6 to ca. 7.0–7.8 Ma), and the older Miocene Ashigong, Garang, and Guidemen formations. These rocks document a generally upward coarsening sequence, characterized by increasing accumulation rates. Increasing gravel content and sizes of its components, changes of bedding dips and source rock types, and marginal growth faults collectively reflect accelerated deformation and uplift of the NE Tibetan Plateau after 8 Ma, punctuated by a sharp increase in sedimentation rate at ca. 3.2 Ma that reflects the boulder conglomerates of the Ganjia formation. Interestingly, much of the vergence of the compressional deformation in the basin is to the south, accommodated by a sequence of six thrusts (F1–F6), which become active one by one progressively later toward the south, undoubtedly contributing to the uplift of this part of the plateau. F1 likely initiated the Guide Basin due to crustal flexure in the Oligocene, F2 was active in the early Miocene, F4 and F5 at ca. 3.6 Ma, and F6 was active in the early Pleistocene. The detailed late Miocene and younger magnetostratigraphy allows us to place much improved time constraints on the deformation and, hence, uplift of northeastern Tibet, which, when compared with ages for events on other parts of the plateau, provides important boundary conditions for the geodynamical evolution of Tibet.


Science in China Series D: Earth Sciences | 2001

Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan Plateau since 13 Ma BP

Chunhui Song; Xiaomin Fang; Jijun Li; Junping Gao; Zhijun Zhao; Majie Fan

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.


Geological Society, London, Special Publications | 2013

Oligocene slow and Miocene–Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology

Xiaomin Fang; Dongliang Liu; Chunhui Song; Shuang Dai; Qingquan Meng

Abstract Most existing tectonic models suggest Pliocene–Quaternary deformation and uplift of the NE Tibetan Plateau in response to the collision of India with Asia. Within the NE Tibetan Plateau, growth of the terranes was suggested to progress northeastward with the Yumu Shan (mountain) at the northeasternmost corner of the Qilian Shan (mountains) being uplifted only since about 1 Ma ago. Here we present a detailed palaeomagnetic dating and tectonosedimentological measurement of Cenozoic sediments in the eastern Jiuquan Basin related to the deformation and uplift of the North Qilian Shan and Yumu Shan. The results show that the eastern Jiuquan Basin is a Cenozoic foreland basin and received sediments at about 27.8 Ma at the latest. Eight subsequent tectonic events at about 27.8, 24.6, 13.7–13, 9.8–9.6, 5.1–3.6, 2.8–2.6, 0.8 and 0.1 Ma demonstrate the development of the foreland basin in response to Oligocene–Quaternary uplift of the North Qilian Shan and subsequent propagation of thrust–fold system owing to collision of India with Asia. The Yumu Shan is the late phase of deformation front in the thrust–fold system and commenced rapid uplift at about 9.8–9.6 Ma at the latest. A rigid block-floating model is proposed to interpret the mechanism of this deformation and uplift history.


Journal of Geophysical Research | 2015

Late Tertiary reorganizations of deformation in northeastern Tibet constrained by stratigraphy and provenance data from eastern Longzhong Basin

Shanpin Liu; Jijun Li; Daniel F. Stockli; Chunhui Song; Junsheng Nie; Tingjiang Peng; Xiuxi Wang; Kuang He; Zhengchuang Hui; Jun Zhang

The deformation of the Tibetan Plateau is central to unraveling the process and mechanism of continental tectonics. Although most agree that crust shortening and plateau growth were protracted throughout the Cenozoic Indo-Asian collision, particular deformation histories relating to tectonic kinematics and dynamics are still incomplete due to sparseness of diagnostic geological information from plateau margin. Here we present combined investigation of stratigraphy, magnetostratigraphy, and provenance for the eastern margin of Longzhong Basin to show two reorganizations of basin formation and tectonic regime during the late Tertiary. First, the depocenter migrated from the dispersed Paleogene sequences to the Wushan-Tianshui foreland sequence during the earliest Miocene (circa 22 Ma), accompanied by shift of sedimentary provenance from double sources including the eastern Qilian block and eastern West Qinling terrain to single source within the West Qinling. It suggests reorganization of deformation from NW-SE extension to NE-SW contraction and initial uplift of the eastern West Qinling. Second, massive coarse-grained fluvial beds were revived in the Wushan Basin during the late Miocene (circa 10 Ma), associated by eastward depositional expansion and another shift of sedimentary provenance toward northeast. It reflects thrusting up of the northern edge of the West Qinling and Liupan Shan Mountains linked with relocation of crust shortening from NE-SW direction to ENE-WSW direction and accelerated deformation of northeastern Tibet. These transitions of deformation regimes imply variation of geodynamic mechanisms during the process of plateau growth.


Geological Society, London, Special Publications | 2013

Neogene rotations in the Jiuquan Basin, Hexi Corridor, China

Maodu Yan; Xiaomin Fang; Rob Van der Voo; Chunhui Song; Jijun Li

Abstract Vertical-axis rotations of blocks in/around the Tibetan Plateau can be attributed to the India–Asia collision. Study of the vertical-axis rotations of these blocks will increase our understanding of the mechanisms and kinematics of continent–continent collisions. We report here a new palaeomagnetic study of rotations using data from four localities (five magnetostratigraphy sections) in the Jiuquan Basin. Our study indicates that the mean declinations of each section are different from each other, similar to what has been observed in the other localities in the NE Tibetan Plateau. However, using the mean directions of every 100 m of section, we observe that the four localities have similar sequential patterns of rotations during the last 13 Ma: significant continuous counterclockwise before c. 8.0 Ma, insignificant rotations between 8.0–4.0 Ma, and slight clockwise rotation after 4.0 Ma. This indicates that, rather than being a record of spatially varying declinations, it is a temporal variation in the occurrence of regional rotations. Combined with other geological evidence, the rotation patterns may suggest two major tectonic activity phases of the northeastern Tibetan Plateau during the last 13 Ma: an eastward extrusion and strike-slip dominant phase before 8.0 Ma, a significant shortening and a rapid uplift dominant phase after 8.0 Ma. Supplementary material: Magnetostratigraphic results of the Hongshuiba and Wenshushan sections are available at: http://www.geolsoc.org.uk/SUP18540.


Journal of Earth Science | 2013

Cenozoic tectonic uplift history of Western Qinling: Evidence from sedimentary and fission-track data

Xiuxi Wang; Massimiliano Zattin; Jijun Li; Chunhui Song; Shu Chen; Cheng Yang; Shengda Zhang; Jiwei Yang

The western Qinling (秦岭) orogenic belt is one of the outermost ranges in the northeastern Tibetan Plateau. Its tectonic uplift history is therefore essential to insight on the evolution history of the plateau. However, the timing of deformation and uplift history is still poorly known. Fortunately, its Cenozoic orogenic history is recorded in an excellent synorogenic sedimentary sequence exposed in the Tianshui (天水) Basin, the northeastern foot of western Qinling. According to sedimentary-tectonic analysis of the Yaodian (尧店) and Lamashan (喇嘛山) sections based on the previous magnetostratigraphy studies, we speculated that two stages (occurred at 9.2–7.4 and ∼3.6 Ma) of variation in depositional facies were attributed to the uplift and deformation of the western Qinling, and the modern structure geomorphic frame of the northeastern Tibet formed after 2.6 Ma. Furthermore, four stages of active processes along the western Qinling occurred at 49–41, 34–27, 25–19 and ∼13 Ma, are deciphered from an integrated detrital apatite fission-track data of the Ganquan (甘泉), Yaodian main sections and seven small ones. The former two are represents the exhumation episodes triggered by tectonism and the others attributed to the volcanic signals.


Journal of Geophysical Research | 2017

Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission-track thermochronology in the Jiuquan Basin

Pengju He; Chunhui Song; Yadong Wang; Lihao Chen; Pengfei Chang; Qiangqiang Wang; Bo Ren

The India-Asia collision resulted in the Cenozoic framework of faults, ranges, and tectonic basins and the high topography of the northeastern Tibetan Plateau, but how and when these features formed remains poorly understood, leading to conflicting tectonic models. However, information on the tectonic evolution of these active orogenic belts is well preserved in synorogenic basin sediments. In this study, we carefully analyze the detrital apatite fission-track (AFT) ages of Cenozoic synorogenic sediments from the Jiuquan Basin to decipher the entire exhumation process of the adjacent Qilian Shan throughout the Cenozoic. Our data indicate that initially rapid Cenozoic exhumation occurred in the Qilian Shan during the late Paleocene-early Eocene (~60-50 Ma), almost synchronous with the India-Asia collision. The Qilian Shan subsequently experienced long-lived exhumation that continued until at least the middle Miocene (~45-10 Ma). During this period of exhumation in the Qilian Shan, tectonic deformation occurred throughout the northeastern Tibetan Plateau. The early Cenozoic deformation in the northeastern Tibetan Plateau may have been caused by the transfer of tectonic stress from the distant India-Asia collision boundary through the complex lithospheric environment of the Tibetan Plateau. The present tectonic configuration and topography of the Qilian Shan and the northeastern Tibetan Plateau likely became established since the middle Miocene and after the long-lived deformation began in the early Cenozoic.


Journal of Earth Science | 2014

Understanding Miocene climate evolution in Northeastern Tibet: Stable carbon and oxygen isotope records from the Western Tianshui Basin, China

Zhanfang Hou; Jijun Li; Chunhui Song; Jun Zhang; Zhengchuang Hui; Shiyue Chen; Feng Xian

To investigate climate evolution during the Miocene, especially during the Middle Miocene climate transition on the northeastern Tibetan Plateau, stable oxygen and carbon isotopes of carbonates from a 288-m-thick lacustrine-fluvial sediment sequence covering the period from 17.1 to 6.1 Ma from Tianshui Basin, China, were analyzed. The relatively low stable oxygen isotope values indicate the prevalence of wet climate conditions during the period of 17.1–13.6 Ma, an interval corresponding to the well-known Middle Miocene Climate Optimum. The interval between 13.6 and 11.0 Ma (i.e., the late Middle Miocene) is marked by a progressive increase in the δ18O values, indicative of a decrease in precipitation, probably linked to the expansion of the East Antarctic Ice Sheet and global cooling since about 14 Ma. The climate in the study area continued to get drier as shown by the enrichment of the heavy oxygen isotope from 11 Ma. We attribute these stepwise climatic changes as revealed by our carbonate δ18O record from the northeastern Tibetan Plateau to the sustained global cooling that may have reduced moist transport to Central Asia, which in turn led to a permanent aridification.


Geological Society, London, Special Publications | 2013

Magnetostratigraphy, fence diagrams and basin analysis

Maodu Yan; Rob Van der Voo; Xiaomin Fang; Chunhui Song

Abstract Correlation of lithostratigraphic sections is widely used to examine the nature of lateral facies changes within or between basins. It can provide significant clues for regional environmental and palaeogeographic reconstructions. There are problems associated with lithostratigraphic correlation; diachronous deposition of similar lithological units may not be recognized. We report here an attempt to determine lateral facies changes in coeval sedimentary sections, through three-dimensional magnetostratigraphic correlations in the Guide Basin, an intramontane basin in the northeastern part of the Tibetan Plateau. The method is successful for correlating lateral facies and helps to identify sediment sources in the basin.


Acta Geologica Sinica-english Edition | 2017

Sedimentary Conditions of Evaporites in the Late Jurassic Xiali Formation, Qiangtang Basin: Evidence from Geochemistry Records

Chunhui Song; Yongyao Zeng; Maodu Yan; Xiaomin Fang; Ying Feng; Jiaqiu Pan; Xifang Liu; Qingquan Meng; Chunhua Hu; Sirui Zhong

The Qiangtang Basin (QB), located in the central Tibetan Plateau, is a Jurassic marine basin and one of the most important prospective salt resource belts in China. In recent decades, many outcrops of gypsiferous bed have been found in the Jurassic marine strata in the basin. Salt springs with abnormally high sodium (Na+) contents had been identified in the Late Jurassic Xiali Formation (Fm.) in the basin in the last years. However, to date, no potash or halite deposits have been identified in the QB. Gypsum outcrops and salt springs are very important signs in the investigation of halite and potash deposits. Therefore, the Xiali Fm. is a potentially valuable layer to evaluate for the possible presence of halite and potash deposits in the basin. However, few studies have explored the formation conditions of evaporites in the unit. Here, we present detailed geochemical records from the Yanshiping section related to the study of the formation conditions of evaporites in the Xiali Fm. of the QB. Climate proxies based on the obviously increased anion concentrations of SO42- and Cl- and the significant correlation coefficients of Ca2+-SO42- (R = 0.985) and Na+-Cl- (R = 0.8974) reveal that the upper member of the Xiali Fm. (the upper Xiali Fm.) formed under an arid climate and evolved into the sulfate phase or early chloride phase. Provenance proxies based on the obviously increased K+ and Na+ ion concentrations and the significant correlation coefficient of Na+-Cl- (R = 0.8974) suggest that the upper Xiali Fm. featured optimal provenance conditions for the possible formation of halite deposits. The regression and the semi-closed tidal flat environment in the upper Xiali Fm. were favorable for the formation of potash and halite deposits. The low Mg2+ /Ca2+ values (mean value = 1.82) and significant Na+-Cl- correlation coefficient (R = 0.8974) also suggest that the upper Xiali Fm. is the layer most likely to contain potential halite deposits. In addition, the macroscopic correlations of tectonism, provenance, paleoclimate, saliferous strata and sedimentary environment between the QB and the adjoining Amu Darya Basin in Central Asia reveal that the two basins shared similar geologic settings that were favorable for the formation of evaporites during the Late Jurassic. Therefore, the upper Xiali Fm. is a valuable layer to explore for halite deposit and may be potentially valuable in the future exploration for potash deposits in the QB.

Collaboration


Dive into the Chunhui Song's collaboration.

Top Co-Authors

Avatar

Xiaomin Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maodu Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhijun Zhao

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Weilin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fuli Wu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge