Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunlai Nie is active.

Publication


Featured researches published by Chunlai Nie.


Journal of Biological Chemistry | 2008

Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis.

Chunlai Nie; Changhai Tian; Lixia Zhao; Patrice X. Petit; Maryam Mehrpour; Quan Chen

Bax is activated and translocated onto mitochondria to mediate cytochrome c release and apoptosis. The molecular mechanisms of Bax activation during apoptosis remain a subject of debate. We addressed the question of whether reactive oxygen species could directly activate Bax for its subsequent translocation and apoptosis. Using the SW480 human colon adenocarcinoma cell line stably expressing Bax fused to GFP, we showed that H2O2 induces Bax conformational change, mitochondrial translocation, and subsequent oligomerization at mitochondria. We found that H2O2-induced Bax activation is dependent on the conserved cysteine residue 62 of Bax. Mutation of cysteine 62, but not cysteine 126, to serine or alanine abolished its activation by H2O2 but not other death stimuli, both in SW480 and Bax-deficient HCT116 cells, whereas wild type Bax sensitizes these cells to apoptosis. Cysteines of Bax could chemically react with H2O2. Mutation of Bax BH3 domain in the presence of cysteine 62 also abolished Bax proapoptotic activity. We conclude that reactive oxygen species could be a direct signal for Bax activation by reacting with cysteine residues. Our results identify a critical role of cysteine 62 in oxidative stress-induced Bax activation and subsequent apoptosis.


Free Radical Biology and Medicine | 2009

Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells

Fang Huang; Chunlai Nie; Yang Yang; Wen Yue; Yun Ren; Yingli Shang; Xiaohui Wang; Haijing Jin; Caimin Xu; Quan Chen

Emerging evidence suggests that selenium has chemotherapeutic potential by inducing cancer cell apoptosis with minimal side effects to normal cells. However, the mechanism by which selenium induces apoptosis is not well understood. We have investigated the role of Bax, a Bcl-2 family protein and a critical regulator of the mitochondrial apoptotic pathway, in selenite-induced apoptosis in colorectal cancer cells. We found that supranutritional doses of selenite could induce typical apoptosis in colorectal cancer cells in vitro and in xenograft tumors. Selenite triggers a conformational change in Bax, as detected by the 6A7 antibody, and leads to Bax translocation into the mitochondria, where Bax forms oligomers to mediate cytochrome c release. Importantly, we show that the two conserved cysteine residues of Bax seem to be critical for sensing the intracellular ROS to initiate Bax conformational changes and subsequent apoptosis. Our results show for the first time that selenite can activate the apoptotic machinery through redox-dependent activation of Bax and further suggest that selenite could be useful in cancer therapy.


Journal of Biological Chemistry | 2012

Proapoptotic Protein Smac Mediates Apoptosis in Cisplatin-resistant Ovarian Cancer Cells When Treated with the Anti-tumor Agent AT101

Wenbin Hu; Fang Wang; Jingsheng Tang; Xinyu Liu; Zhu Yuan; Chunlai Nie; Yuquan Wei

Background: BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. Results: AT101 induced apoptosis in chemoresistant ovarian cancer cells. Conclusion: Smac-mediated Bax activation is a determinant of AT101-induced apoptosis. Significance: We provide a theoretical basis for AT101 as a potential therapeutic agent in the treatment of ovarian cancer. Chemoresistance of ovarian cancer has been previously attributed to the expression and activation of Bcl-2 family proteins. BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. AT101 (R-(−)-gossypol), a natural BH3-mimetic molecule, has shown anti-tumor activity as a single agent and in combination with standard anticancer therapies in a variety of tumor models. Here, we report the effect of AT101 on apoptosis in cisplatin-resistant ovarian cancer cells and identify the major molecular events that determine sensitivity. AT101 induced cell apoptosis by activating Bax through a conformational change, translocation, and oligomerization. The inhibition of Bax expression only partially prevented caspase-3 cleavage. However, the gene silencing of Bax had no effect on mitochondrial Smac release. Further experiments demonstrated that Smac reduction inhibited caspase-3 activation and attenuated cell apoptosis. More importantly, the inhibition of Smac or overexpression of XIAP attenuated Bax activation in ovarian cells. Furthermore, our data indicate that the Akt-p53 pathway is involved in the regulation of Smac release. Taken together, our data demonstrate the role of Smac and the molecular mechanisms of AT101-induced apoptosis of chemoresistant ovarian cancer cells. Our findings suggest that AT101 not only triggers Bax activation but also induces mitochondrial Smac release. Activated Smac can enhance Bax-mediated cellular apoptosis. Therefore, Smac mediates Bax activation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.


Journal of Biological Chemistry | 2015

PNAS-4, an Early DNA Damage Response Gene, Induces S Phase Arrest and Apoptosis by Activating Checkpoint Kinases in Lung Cancer Cells.

Zhu Yuan; Wenhao Guo; Jun Yang; Lei Li; Meiliang Wang; Yi Lei; Yang Wan; Xinyu Zhao; Na Luo; Ping Cheng; Xinyu Liu; Chunlai Nie; Yong Peng; Aiping Tong; Yuquan Wei

Background: Elevated PNAS-4 induces S phase arrest and apoptosis in vitro and inhibits tumor growth in vivo. Results: PNAS-4 activates Chk1/2 to cause inhibition of the Cdc25A-CDK2-cyclin E/A pathway, causing S phase arrest and apoptosis. Conclusion: Activation of Chk1/2 is a determinant of S phase arrest and apoptosis. Significance: We provide a novel action mechanism for PNAS-4 as a potential therapeutic target for lung cancer. PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53−/−) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21Waf1/Cip1 and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21Waf1/Cip1 is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.


Oncotarget | 2017

The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells

Jun Yang; Xinyu Zhao; Mei Tang; Lei Li; Yi Lei; Ping Cheng; Wenhao Guo; Yu Zheng; Wei Wang; Na Luo; Yong Peng; Aiping Tong; Yuquan Wei; Chunlai Nie; Zhu Yuan

PUMA is a member of the “BH3-only” branch of the BCL-2 family. Our previous study suggests a therapeutic potential of PUMA in treating ovarian cancer, however, the action mechanism of PUMA remains elusive. In this work, we found that in PUMA adenovirus-infected A2780s ovarian cancer cells, exogenous PUMA was partially accumulated in the cytosol and mainly located to the mitochondria. We further showed that PUMA induces mitochondrial dysfunction-mediated apoptosis and ROS generation through functional BAX in a ROS generating enzyme- and caspase-independent manner irrespective of their p53 status, and results in activation of Nrf2/HO-1 pathway. Furthermore, PUMA induces DNA breaks in γ-H2AX staining, and causes activation of DNA damage-related kinases including ATM, ATR, DNA-PKcs, Chk1 and Chk2, which are correlated with the apoptosis. PUMA also results in ROS-triggered JNK activation. Intriguingly, JNK plays a dual role in both DNA damage response and apoptosis, and has an additional contribution to apoptosis. Taken together, we have provided new insight into the action mechanism by which elevated PUMA first induces ROS generation then results in DNA damage response and JNK activation, ultimately contributing to apoptosis in ovarian cancer cells.


Oncotarget | 2017

PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines

Hang Zhou; Wei Luo; Chao Zeng; Yu Zhang; Liyang Wang; Wenxiu Yao; Chunlai Nie

The crosstalk between apoptosis and autophagy contributes to tumorigenesis and cancer therapy. The process by which BetA (betulinic acid), a naturally occurring triterpenoid, regulates apoptosis and autophagy as a cancer therapy is unclear. In this study, we show for the first time that protein phosphatase 2A (PP2A) acts as a switch to regulate apoptosis and autophagic cell death mediated by BetA. Under normal conditions, caspase-3 is activated by the mitochondrial pathway upon BetA treatment. Activated caspase-3 cleaves the A subunit of PP2A (PP2A/A), resulting in the association of PP2A and Akt. This association inactivates Akt to initiate apoptosis. Overexpression of Bcl-2 attenuates the mitochondrial apoptosis pathway, resulting in caspase-3 inactivation and the dissociation of PP2A and Akt. PP2A isolated from Akt binds with DAPK to induce autophagic cell death. Meanwhile, in vivo tumor experiments have demonstrated that BetA initiates different types of cell death in a myeloma xenograft model. Thus, PP2A can shift myeloma cells from apoptosis to autophagic cell death. These findings have important implications for the therapeutic application of BetA, particularly against apoptosis-resistant cancers.


Oncotarget | 2017

Mcl-1 expression and JNK activation induces a threshold for apoptosis in Bcl-xL-overexpressing hematopoietic cells

Yu Zhang; Xin Li; Shisheng Tan; Xinyu Liu; Xinyu Zhao; Zhu Yuan; Chunlai Nie

The regulation of Mcl-1 expression is necessary for the induction of cancer cell apoptosis by ABTs such as ABT-737, ABT-263 and ABT-199. However, the reduction in Mcl-1 expression is not sufficient for initiating cell death in hematopoietic cancer cells with high Bcl-xL expression. Here, we demonstrate that 2-deoxyglucose (2-DG) enhanced the effect of ABT-199 to induce cell apoptosis in hematologic malignancies with up-regulated Bcl-xL expression. Our study revealed that 2-DG could decrease glucose-dependent and Akt-independent Mcl-1 expression, which is mediated by the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Moreover, the combination of 2-DG and ABT-199 triggered c-Jun NH2-terminal kinase (JNK) phosphorylation and subsequent Bcl-xL degradation, whereas 2-DG and ABT-199 alone had little effect on JNK activation. Therefore, the combination of 2-DG and ABT-199 initiated cell death through the reduction of Mcl-1 expression and JNK activation. Our study could provide a clinical theoretical basis for the use of ABT-199 in hematologic malignancies with excessive Bcl-xL expression.


Oncotarget | 2017

Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma

Chao Lin; Huaying Yan; Jun Yang; Lei Li; Mei Tang; Xinyu Zhao; Chunlai Nie; Na Luo; Yuquan Wei; Zhu Yuan

DESI2 (also known as PNAS-4) is a novel pro-apoptotic gene activated during the early response to DNA damage. We previously reported that overexpression of DESI2 induces S phase arrest and apoptosis by activating checkpoint kinases. The present study was designed to test whether combination of DESI2 and IP10 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co-expressing DESI2 and IP10 was encapsulated with DOTAP/Cholesterol nanoparticle. Immunocompetent mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the complex. We found that, in vitro, the combination of DESI2 and IP10 more efficiently inhibited proliferation of CT26, LL2, SKOV3 and A549 cancer cells via apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice. Mechanistically, the augmented antitumor activity in vivo was associated with induction of apoptosis and inhibition of angiogenesis. The anti-angiogenesis was further mimicked by inhibiting proliferation of immortalized HUVEC cells in vitro. Meanwhile, the infiltration of lymphocytes also contributed to the enhanced antitumor effects. Depletion of CD8+ T lymphocytes significantly abrogated the antitumor activity, whereas depletion of CD4+ T cells or NK cells showed partial abrogation. Our data suggest that the combined gene therapy of DESI2 and IP10 can significantly enhance the antitumor activity as apoptosis inducer, angiogenesis inhibitor and immune response initiator. The present study may provide a novel and effective method for treating cancer.DESI2 (also known as PNAS-4) is a novel pro-apoptotic gene activated during the early response to DNA damage. We previously reported that overexpression of DESI2 induces S phase arrest and apoptosis by activating checkpoint kinases. The present study was designed to test whether combination of DESI2 and IP10 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co-expressing DESI2 and IP10 was encapsulated with DOTAP/Cholesterol nanoparticle. Immunocompetent mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the complex. We found that, in vitro, the combination of DESI2 and IP10 more efficiently inhibited proliferation of CT26, LL2, SKOV3 and A549 cancer cells via apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice. Mechanistically, the augmented antitumor activity in vivo was associated with induction of apoptosis and inhibition of angiogenesis. The anti-angiogenesis was further mimicked by inhibiting proliferation of immortalized HUVEC cells in vitro. Meanwhile, the infiltration of lymphocytes also contributed to the enhanced antitumor effects. Depletion of CD8+ T lymphocytes significantly abrogated the antitumor activity, whereas depletion of CD4+ T cells or NK cells showed partial abrogation. Our data suggest that the combined gene therapy of DESI2 and IP10 can significantly enhance the antitumor activity as apoptosis inducer, angiogenesis inhibitor and immune response initiator. The present study may provide a novel and effective method for treating cancer.


PLOS ONE | 2018

Long non-coding RNA SPRY4-IT1 promotes cell proliferation and invasion by regulation of Cdc20 in pancreatic cancer cells

Wenhao Guo; Kunhong Zhong; Heng Wei; Chunlai Nie; Zhu Yuan

Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) play a critical role in the development of human cancers including pancreatic cancer. Long non-coding RNA SPRY4-IT1 (sprouty4-intron transcript 1) has been reported to play an oncogenic role in various types of human carcinomas. However, the role of SPRY4-IT1 in pancreatic cancer is unclear. The objective of this study was to determine the function of SPRY4-IT1 on proliferation and invasion in pancreatic cancer. In the current study, we dissected the function and mechanism of SPRY4-IT1 by multiple approaches including Real-time RT-PCR, Western blotting analysis, MTT assay, Wound healing assay, Transwell assay, and transfection. We found that down-regulation of SPRY4-IT1 inhibited cell growth and induced cell apoptosis in pancreatic cancer cells. Moreover, SPRY4-IT1 knockdown induced cell cycle arrest at G0/G1 phase. Furthermore, inhibition of SPRY4-IT1 retarded cell migration and invasion in pancreatic cancer cells. Overexpression of SPRY4-IT1 enhanced cell growth and invasion, and inhibited cell apoptosis in pancreatic cancer cells. Mechanistically, suppression of SPRY4-IT1 inhibited the expression of Cdc20 in pancreatic cancer cells. Our findings demonstrated that inhibition of SPRY4-IT1 could be a potential therapeutic approach for the treatment of pancreatic cancer.


Experimental Cell Research | 2018

Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis

Huaying Yan; Wenhao Guo; Ke Li; Mei Tang; Xinyu Zhao; Yi Lei; Chunlai Nie; Zhu Yuan

ABSTRACT DESI2 is a novel pro‐apoptotic gene. We previously reported that DESI2 overexpression induces S phase arrest and apoptosis by activating checkpoint kinases. This work was to test whether the combination of endostatin, an endogenous antiangiogenic inhibitor, with DESI2 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co‐expressing DESI2 and endostatin was encapsulated with DOTAP/Cholesterol cationic liposome. Mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the DNA‐liposome complex. We found that, in vitro, the combination of DESI2 and endostatin more efficiently inhibited proliferation of CT26, LL2, HCT116 and A549 cancer cells via apoptosis, as assessed by MTT assay, colony‐formation assays, flow cytometric analysis, hoechst staining and activation of caspase‐3, respectively. In addition, DESI2 overexpression caused up‐regulation of RPS7, a substrate of DESI2 deubiquitination. Furthermore, siRNA targeting RPS7 partially abrogated, whereas RPS7 overexpression enhanced DESI2‐induced inhibition of cell proliferation. Importantly, the combination also caused DNA lesions accumulation, which further promotes apoptosis. Mechanistic rationale suggested that endostatin first inhibits DNA‐PKcs kinase, and partly abrogated DESI2‐induced phosphorylation of DNA‐PKcs, leading to increase of DNA damage, then contributes to DESI2‐induced apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice than mono therapy. The improved antitumor effect was associated with inhibition of cell proliferation via apoptosis, as analyzed by TUNEL assay and PCNA immunostaining. The combination also inhibited angiogenesis, as assessed by alginate‐encapsulated tumor cell assay and CD31 staining. Our data suggest that the combined gene therapy of DESI2 and endostatin can significantly enhance the antitumor activity as a DNA lesions accumulator, apoptosis inducer and angiogenesis inhibitor. The present study may provide a novel method for the treatment of cancer. HighlightsCombination of DESI2 with endostatin could improve the therapy efficacy in vitro and in vivo.The combination of DESI2 with endostatin causes DNA lesions accumulation.The improved antitumor effect was associated with inhibition of cell proliferation via apoptosis.The enhanced antitumor effect also partially resulted from inhibition of angiogenesis.

Collaboration


Dive into the Chunlai Nie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge