Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunling Hu is active.

Publication


Featured researches published by Chunling Hu.


JAMA Oncology | 2017

Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer

Fergus J. Couch; Hermela Shimelis; Chunling Hu; Steven N. Hart; Eric C. Polley; Jie Na; Emily Hallberg; Raymond Moore; Abigail Thomas; Jenna Lilyquist; Bingjian Feng; Rachel McFarland; Tina Pesaran; Robert Huether; Holly LaDuca; Elizabeth C. Chao; David E. Goldgar; Jill S. Dolinsky

Importance Germline pathogenic variants in BRCA1 and BRCA2 predispose to an increased lifetime risk of breast cancer. However, the relevance of germline variants in other genes from multigene hereditary cancer testing panels is not well defined. Objective To determine the risks of breast cancer associated with germline variants in cancer predisposition genes. Design, Setting, and Participants A study population of 65 057 patients with breast cancer receiving germline genetic testing of cancer predisposition genes with hereditary cancer multigene panels. Associations between pathogenic variants in non-BRCA1 and non-BRCA2 predisposition genes and breast cancer risk were estimated in a case-control analysis of patients with breast cancer and Exome Aggregation Consortium reference controls. The women underwent testing between March 15, 2012, and June 30, 2016. Main Outcomes and Measures Breast cancer risk conferred by pathogenic variants in non-BRCA1 and non-BRCA2 predisposition genes. Results The mean (SD) age at diagnosis for the 65 057 women included in the analysis was 48.5 (11.1) years. The frequency of pathogenic variants in 21 panel genes identified in 41 611 consecutively tested white women with breast cancer was estimated at 10.2%. After exclusion of BRCA1, BRCA2, and syndromic breast cancer genes (CDH1, PTEN, and TP53), observed pathogenic variants in 5 of 16 genes were associated with high or moderately increased risks of breast cancer: ATM (OR, 2.78; 95% CI, 2.22-3.62), BARD1 (OR, 2.16; 95% CI, 1.31-3.63), CHEK2 (OR, 1.48; 95% CI, 1.31-1.67), PALB2 (OR, 7.46; 95% CI, 5.12-11.19), and RAD51D (OR, 3.07; 95% CI, 1.21-7.88). Conversely, variants in the BRIP1 and RAD51C ovarian cancer risk genes; the MRE11A, RAD50, and NBN MRN complex genes; the MLH1 and PMS2 mismatch repair genes; and NF1 were not associated with increased risks of breast cancer. Conclusions and Relevance This study establishes several panel genes as high- and moderate-risk breast cancer genes and provides estimates of breast cancer risk associated with pathogenic variants in these genes among individuals qualifying for clinical genetic testing.


PLOS ONE | 2012

The Transcription Factor GLI1 Mediates TGFβ1 Driven EMT in Hepatocellular Carcinoma via a SNAI1-Dependent Mechanism

Xin Zheng; Natalia B. Rumie Vittar; Xiaohong Gai; Maite G. Fernandez-Barrena; Catherine D. Moser; Chunling Hu; Luciana L. Almada; Angela L. McCleary-Wheeler; Sherine F. Elsawa; Anne M. Vrabel; Abdirashid M. Shire; Andrea Comba; Snorri S. Thorgeirsson; Youngsoo Kim; Qingguang Liu; Martin E. Fernandez-Zapico; Lewis R. Roberts

The role of the epithelial-to-mesenchymal transition (EMT) during hepatocellular carcinoma (HCC) progression is well established, however the regulatory mechanisms modulating this phenomenon remain unclear. Here, we demonstrate that transcription factor glioma-associated oncogene 1 (GLI1) modulates EMT through direct up-regulation of SNAI1 and serves as a downstream effector of the transforming growth factor-β1 (TGFβ1) pathway, a well-known regulator of EMT in cancer cells. Overexpression of GLI1 increased proliferation, viability, migration, invasion, and colony formation by HCC cells. Conversely, GLI1 knockdown led to a decrease in all the above-mentioned cancer-associated phenotypes in HCC cells. Further analysis of GLI1 regulated cellular functions showed that this transcription factor is able to induce EMT and identified SNAI1 as a transcriptional target of GLI1 mediating this cellular effect in HCC cells. Moreover, we demonstrated that an intact GLI1-SNAI1 axis is required by TGFβ1 to induce EMT in these cells. Together, these findings define a novel cellular mechanism regulated by GLI1, which controls the growth and EMT phenotype in HCC.


Journal of Virology | 2007

Affinity Thresholds for Membrane Fusion Triggering by Viral Glycoproteins

Kosei Hasegawa; Chunling Hu; Takafumi Nakamura; James D. Marks; Stephen J. Russell; Kah Whye Peng

ABSTRACT Enveloped viruses trigger membrane fusion to gain entry into cells. The receptor affinities of their attachment proteins vary greatly, from 10−4 M to 10−9 M, but the significance of this is unknown. Using six retargeted measles viruses that bind to Her-2/neu with a 5-log range in affinity, we show that receptor affinity has little impact on viral attachment but is nevertheless a key determinant of infectivity and intercellular fusion. For a given cell surface receptor density, there is an affinity threshold above which cell-cell fusion proceeds efficiently. Suprathreshold affinities do not further enhance the efficiency of membrane fusion.


American Journal of Human Genetics | 2016

Evaluation of ACMG-Guideline-Based Variant Classification of Cancer Susceptibility and Non-Cancer-Associated Genes in Families Affected by Breast Cancer.

Kara N. Maxwell; Steven N. Hart; Joseph Vijai; Kasmintan A. Schrader; Thomas P. Slavin; Tinu Thomas; Bradley Wubbenhorst; Vignesh Ravichandran; Raymond Moore; Chunling Hu; Lucia Guidugli; Brandon Wenz; Susan M. Domchek; Mark Robson; Csilla Szabo; Susan L. Neuhausen; Jeffrey N. Weitzel; Kenneth Offit; Fergus J. Couch; Katherine L. Nathanson

Sequencing tests assaying panels of genes or whole exomes are widely available for cancer risk evaluation. However, methods for classification of variants resulting from this testing are not well studied. We evaluated the ability of a variant-classification methodology based on American College of Medical Genetics and Genomics (ACMG) guidelines to define the rate of mutations and variants of uncertain significance (VUS) in 180 medically relevant genes, including all ACMG-designated reportable cancer and non-cancer-associated genes, in individuals who met guidelines for hereditary cancer risk evaluation. We performed whole-exome sequencing in 404 individuals in 253 families and classified 1,640 variants. Potentially clinically actionable (likely pathogenic [LP] or pathogenic [P]) versus nonactionable (VUS, likely benign, or benign) calls were 95% concordant with locus-specific databases and Clinvar. LP or P mutations were identified in 12 of 25 breast cancer susceptibility genes in 26 families without identified BRCA1/2 mutations (11%). Evaluation of 84 additional genes associated with autosomal-dominant cancer susceptibility identified LP or P mutations in only two additional families (0.8%). However, individuals from 10 of 253 families (3.9%) had incidental LP or P mutations in 32 non-cancer-associated genes, and 9% of individuals were monoallelic carriers of a rare LP or P mutation in 39 genes associated with autosomal-recessive cancer susceptibility. Furthermore, 95% of individuals had at least one VUS. In summary, these data support the clinical utility of ACMG variant-classification guidelines. Additionally, evaluation of extended panels of cancer-associated genes in breast/ovarian cancer families leads to only an incremental clinical benefit but substantially increases the complexity of the results.


Cancer Epidemiology, Biomarkers & Prevention | 2016

Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients

Chunling Hu; Steven N. Hart; William R. Bamlet; Raymond Moore; Kannabiran Nandakumar; Bruce W. Eckloff; Yean K. Lee; Gloria M. Petersen; Robert R. McWilliams; Fergus J. Couch

The prevalence of germline pathogenic mutations in a comprehensive panel of cancer predisposition genes is not well-defined for patients with pancreatic ductal adenocarcinoma (PDAC). To estimate the frequency of mutations in a panel of 22 cancer predisposition genes, 96 patients unselected for a family history of cancer who were recruited to the Mayo Clinic Pancreatic Cancer patient registry over a 12-month period were screened by next-generation sequencing. Fourteen pathogenic mutations in 13 patients (13.5%) were identified in eight genes: four in ATM, two in BRCA2, CHEK2, and MSH6, and one in BARD1, BRCA1, FANCM, and NBN. These included nine mutations (9.4%) in established pancreatic cancer genes. Three mutations were found in patients with a first-degree relative with PDAC, and 10 mutations were found in patients with first- or second-degree relatives with breast, pancreas, colorectal, ovarian, or endometrial cancers. These results suggest that a substantial proportion of patients with PDAC carry germline mutations in predisposition genes associated with other cancers and that a better understanding of pancreatic cancer risk will depend on evaluation of families with broad constellations of tumors. These findings highlight the need for recommendations governing germline gene-panel testing of patients with pancreatic cancer. Cancer Epidemiol Biomarkers Prev; 25(1); 207–11. ©2015 AACR.


Journal of Virology | 2010

Productive Replication of vif-Chimeric HIV-1 in Feline Cells

Melissa A. Stern; Chunling Hu; Dyana T. Saenz; Hind J. Fadel; Olivia Sims; Mary Peretz; Eric M. Poeschla

ABSTRACT Nonprimate animal models of HIV-1 infection are prevented by missing cellular cofactors and by antiviral actions of species-specific host defense factors. These blocks are profound in rodents but may be less abundant in certain Carnivora. Here, we enabled productive, spreading replication and passage of HIV-1 in feline cells. Feline fibroblasts, T-cell lines, and primary peripheral blood mononuclear cells supported early and late HIV-1 life cycle phases in a manner equivalent to that of human cells, except that produced virions had low infectivity. Stable expression of feline immunodeficiency virus (FIV) Vif-green fluorescent protein (GFP) in HIV-1 entry receptor-complemented feline (CrFK) cells enabled robust spreading HIV-1 replication. FIV Vif colocalized with feline APOBEC3 (fA3) proteins, targeted them for degradation, and prevented G→A hypermutation of the HIV-1 cDNA by fA3CH and fA3H. HIV-1 Vif was inactive against fA3s as expected and even paradoxically augmented restriction in some assays. In an interesting contrast, simian immunodeficiency virus SIVmac Vif had substantial anti-fA3 activities, which were complete against fA3CH and partial against fA3H. Moreover, both primate lentiviral Vifs colocalized with fA3s and could be pulled down from cell lysates by fA3CH. HIV-1 molecular clones that encode FIV Vif or SIVmac Vif (HIV-1VF and HIV-1VS) were then constructed. These viruses replicated productively in HIV-1 receptor-expressing CrFK cells and could be passaged serially to uninfected cells. Thus, with the exception of entry receptors, the cat genome can supply the dependency factors needed by HIV-1, and a main restriction can be countered by vif chimerism. The results raise the possibility that the domestic cat could yield an animal model of HIV-1 infection.


Journal of Virology | 2010

The HIV-1 Central Polypurine Tract Functions as a Second Line of Defense against APOBEC3G/F

Chunling Hu; Dyana T. Saenz; Hind J. Fadel; William H. Walker; Mary Peretz; Eric M. Poeschla

ABSTRACT HIV-1 and certain other retroviruses initiate plus-strand synthesis in the center of the genome as well as at the standard retroviral 3′ polypurine tract. This peculiarity of reverse transcription results in a central DNA “flap” structure that has been of controversial functional significance. We mutated both HIV-1 flap-generating elements, the central polypurine tract (cPPT) and the central termination sequence (CTS). To avoid an ambiguity of previous studies, we did so without affecting integrase coding. DNA flap formation was disrupted but single-cycle infection was unaffected in all target cells tested, regardless of cell cycle status. Spreading HIV-1 infection was also normal in most T cell lines, and flap mutant viruses replicated equivalently to the wild type in nondividing cells, including macrophages. However, spreading infection of flap mutant HIV-1 was impaired in non-vif-permissive cells (HuT78, H9, and primary human peripheral blood mononuclear cells [PBMCs]), suggesting APOBEC3G (A3G) restriction. Single-cycle infections confirmed that vif-intact flap mutant HIV-1 is restricted by producer cell A3G/F. Combining the Δvif and cPPT-CTS mutations increased A3G restriction synergistically. Moreover, RNA interference knockdown of A3G in HuT78 cells released the block to flap mutant HIV-1 replication. Flap mutant HIV-1 also accrued markedly increased A3G-mediated G→A hypermutation compared to that of wild-type HIV-1 (a full log10 in the 0.36 kb downstream of the mutant cPPT). We suggest that the triple-stranded DNA structure, the flap, is not the consequential outcome. The salient functional feature is central plus-strand initiation, which functions as a second line of defense against single-stranded DNA editing by A3 proteins that survive producer cell degradation by Vif.


Journal of Virology | 2011

LEDGF Dominant Interference Proteins Demonstrate Prenuclear Exposure of HIV-1 Integrase and Synergize with LEDGF Depletion To Destroy Viral Infectivity

Anne M. Meehan; Dyana T. Saenz; James H. Morrison; Chunling Hu; Mary Peretz; Eric M. Poeschla

ABSTRACT Target cell overexpression of the integrase binding domain (IBD) of LEDGF/p75 (LEDGF) inhibits HIV-1 replication. The mechanism and protein structure requirements for this dominant interference are unclear. More generally, how and when HIV-1 uncoating occurs postentry is poorly defined, and it is unknown whether integrase within the evolving viral core becomes accessible to cellular proteins prior to nuclear entry. We used LEDGF dominant interference to address the latter question while characterizing determinants of IBD antiviral activity. Fusions of green fluorescent protein (GFP) with multiple C-terminal segments of LEDGF inhibited HIV-1 replication substantially, but minimal chimeras of either polarity (GFP-IBD or IBD-GFP) were most effective. Combining GFP-IBD expression with LEDGF depletion was profoundly antiviral. CD4+ T cell lines were rendered virtually uninfectable, with single-cycle HIV-1 infectivity reduced 4 logs and high-input (multiplicity of infection = 5.0) replication completely blocked. We restricted GFP-IBD to specific intracellular locations and found that antiviral activity was preserved when the protein was confined to the cytoplasm or directed to the nuclear envelope. The life cycle block triggered by the cytoplasm-restricted protein manifested after nuclear entry, at the level of integration. We conclude that integrase within the viral core becomes accessible to host cell protein interaction in the cytoplasm. LEDGF dominant interference and depletion impair HIV-1 integration at distinct postentry stages. GFP-IBD may trigger premature or improper integrase oligomerization.


Hepatology | 2015

Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma.

Renumathy Dhanasekaran; Ikuo Nakamura; Chunling Hu; Gang Chen; Abdul M. Oseini; Elif Sezin Seven; Alexander G. Miamen; Catherine D. Moser; Wei Zhou; Toin H. van Kuppevelt; Jan M. van Deursen; Taofic Mounajjed; Martin E. Fernandez-Zapico; Lewis R. Roberts

In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1‐Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1‐Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild‐type mice. Lung metastases were found in 75% of Sulf1‐Tg mice but not in wild‐type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor‐β (TGF‐β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF‐β/SMAD pathway is functional; overexpression of SULF1 promotes TGF‐β‐induced gene expression and epithelial–mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF‐β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF‐β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence‐free survival (hazard ratio 4.1, 95% confidence interval 1.9‐8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF‐β expression and with several TGF‐β‐related epithelial–mesenchymal transition genes in human HCC. Conclusion: Our study proposes a novel role of SULF1 in HCC tumor progression through augmentation of the TGF‐β pathway, thus defining SULF1 as a potential biomarker for tumor progression and a novel target for drug development for HCC. (Hepatology 2015;61:1269–1283)


npj Breast Cancer | 2017

The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk

Thomas P. Slavin; Kara N. Maxwell; Jenna Lilyquist; Joseph Vijai; Susan L. Neuhausen; Steven N. Hart; Vignesh Ravichandran; Tinu Thomas; Ann Maria; Danylo Villano; Kasmintan A. Schrader; Raymond Moore; Chunling Hu; Bradley Wubbenhorst; Brandon Wenz; Kurt D’Andrea; Mark E. Robson; Paolo Peterlongo; Bernardo Bonanni; James M. Ford; Judy Garber; Susan M. Domchek; Csilla Szabo; Kenneth Offit; Katherine L. Nathanson; J. N. Weitzel; Fergus J. Couch

Understanding the gene-specific risks for development of breast cancer will lead to improved clinical care for those carrying germline mutations in cancer predisposition genes. We sought to detail the spectrum of mutations and refine risk estimates for known and proposed breast cancer susceptibility genes. Targeted massively-parallel sequencing was performed to identify mutations and copy number variants in 26 known or proposed breast cancer susceptibility genes in 2134 BRCA1/2-negative women with familial breast cancer (proband with breast cancer and a family history of breast or ovarian cancer) from a largely European–Caucasian multi-institutional cohort. Case–control analysis was performed comparing the frequency of internally classified mutations identified in familial breast cancer women to Exome Aggregation Consortium controls. Mutations were identified in 8.2% of familial breast cancer women, including mutations in high-risk (odds ratio > 5) (1.4%) and moderate-risk genes (2 < odds ratio < 5) (2.9%). The remaining familial breast cancer women had mutations in proposed breast cancer genes (1.7%), Lynch syndrome genes (0.5%), and six cases had two mutations (0.3%). Case–control analysis demonstrated associations with familial breast cancer for ATM, PALB2, and TP53 mutations (odds ratio > 3.0, p < 10−4), BARD1 mutations (odds ratio = 3.2, p = 0.012), and CHEK2 truncating mutations (odds ratio = 1.6, p = 0.041). Our results demonstrate that approximately 4.7% of BRCA1/2 negative familial breast cancer women have mutations in genes statistically associated with breast cancer. We classified PALB2 and TP53 as high-risk, ATM and BARD1 as moderate risk, and CHEK2 truncating mutations as low risk breast cancer predisposition genes. This study demonstrates that large case–control studies are needed to fully evaluate the breast cancer risks associated with mutations in moderate-risk and proposed susceptibility genes.Familial breast cancer: Pinning down susceptibility genes beyond BRCAWomen with the heritable form of breast cancer often harbor mutations in cancer-linked genes other than the usual suspects, BRCA1 and BRCA2. Slavin, Maxwell, Lilyquist, Joseph, and colleagues from major national and international cancer centers studied 2134 women with familial breast cancer who tested negative for BRCA1/2 gene mutations. The researchers sequenced 26 known or proposed breast cancer susceptibility genes and found mutations in approximately 1 in every 12 of the study subjects. They then further broke down the susceptibility genes into those that confer high-, moderate- or low-risk—although not all the proposed breast cancer genes reached statistical significance and, as such, their clinical importance remains unclear. The results support adding some of the high- and moderate-risk genes to multi-panel diagnostic tests that aim to determine the likelihood of a women developing heritable breast cancer.

Collaboration


Dive into the Chunling Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric C. Polley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge